微积分公式
D
x
sinx=cosx
cosx=-sinx
tanx=c2x
cotx=-csc2x
cx=cxtanx
cscx=-cscxcotx
sinxdx=-cosx+C
cosxdx=sinx+C
tanxdx=ln|cx|+C
cotxdx=ln|sinx|+C
cxdx=ln|cx+tanx|+C
cscxdx=ln|cscx–cotx|+C
sin-1(-x)=-sin-1x
cos-1(-x)=-cos-1x
tan-1(-x)=-tan-1x
cot-1(-x)=-cot-1x
c-1(-x)=-c-1x
csc-1(-x)=-csc-1x
D
x
sin-1(
a
x
)=
22
1
xa
cos-1(
a
x
)=
tan-1(
a
x
)=
22xa
a
cot-1(
a
x
)=
c-1(
a
x
)=
22axx
a
csc-1(x/a)=
sin-1xdx=xsin-1x+21x+C
cos-1xdx=xcos-1x-21x+C
tan-1xdx=xtan-1x-ln(1+x2)+C
cot-1xdx=xcot-1x+ln(1+x2)+C
c-1xdx=xc-1x-ln|x+12x|+C
csc-1xdx=xcsc-1x+ln|x+12x|+C
sinh-1(
a
x
)=ln(x+22xa)xR
cosh-1(
a
x
)=ln(x+22ax)x≧1
tanh-1(
a
x
)=
a2
1
ln(
xa
xa
)|x|<1
coth-1(
a
x
)=
a2
1
ln(
ax
ax
)|x|>1
ch-1(
a
x
)=ln(
x
1
+
2
21
x
x
)0≦x≦1
csch-1(
a
x
)=ln(
x
1
+
2
21
x
x
)|x|>0
D
x
sinhx=coshx
coshx=sinhx
tanhx=ch2x
cothx=-csch2x
chx=-chxtanhx
cschx=-cschxcothx
sinhxdx=coshx+C
coshxdx=sinhx+C
tanhxdx=ln|coshx|+C
cothxdx=ln|sinhx|+C
chxdx=-2tan-1(e-x)+C
cschxdx=2ln|
x
x
e
e
21
1
|+C
duv=udv+vdu
duv=uv=udv+vdu
→udv=uv-vdu
cos2θ-sin2θ=cos2θ
cos2θ+sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
D
x
sinh-1(
a
x
)=
22
1
xa
cosh-1(
a
x
)=
22
1
ax
tanh-1(
a
x
)=
22xa
a
coth-1(
a
x
)=
ch-1(
a
x
)=
22xax
a
csch-1(x/a)=
22xax
a
sinh-1xdx=xsinh-1x-21x+C
cosh-1xdx=xcosh-1x-12x+C
tanh-1xdx=xtanh-1x+ln|1-x2|+C
coth-1xdx=xcoth-1x-ln|1-x2|+C
ch-1xdx=xch-1x-sin-1x+C
csch-1xdx=xcsch-1x+sinh-1x+C
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ=(3sinθ-sin3θ)
→cos3θ=(3cosθ+cos3θ)
sinx=
j
eejxjx
2
cosx=
2
jxjxee
sinhx=
2
xxee
coshx=
2
xxee
正弦定理:
sin
a
=
sin
b
=
sin
c
=2R
余弦定理:a2=b2+c2-2bccosα
b2=a2+c2-2accosβ
c2=a2+b2-2abcosγ
sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβsinαsinβ
2sinαcosβ=sin(α+β)+sin(α-β)
sinα+sinβ=2sin(α+β)cos(α-β)
sinα-sinβ=2cos(α+β)sin(α-β)
cosα+cosβ=2cos(α+β)cos(α-β)
a
b
c
α
β
γ
R
2cosαsinβ=sin(α+β)-sin(α-β)
2cosαcosβ=cos(α-β)+cos(α+β)
2sinαsinβ=cos(α-β)-cos(α+β)
cosα-cosβ=-2sin(α+β)sin(α-β)
tan(α±β)=
tantan
tantan
,cot(α±β)=
cotcot
cotcot
ex=1+x+
!2
2x
+
!3
3x
+…+
!n
xn
+…
sinx=x-
!3
3x
+
!5
5x
-
!7
7x
+…+
)!12(
)1(12
n
xnn
+…
cosx=1-
!2
2x
+
!4
4x
-
!6
6x
+…+
)!2(
)1(2
n
xnn
+…
ln(1+x)=x-
2
2x
+
3
3x
-
4
4x
+…+
)!1(
)1(1
n
xnn
+…
tan-1x=x-
3
3x
+
5
5x
-
7
7x
+…+
)12(
)1(12
n
xnn
+…
(1+x)r=1+rx+
!2
)1(rr
x2+
!3
)2)(1(rrr
x3+…-1
n
i1
1=n
n
i
i
1
=n(n+1)
n
i
i
1
2=
6
1
n(n+1)(2n+1)
n
i
i
1
3=[n(n+1)]2
Γ(x)=
0
tx-1e-tdt=2
0
t2x-12tedt=
0
)
1
(ln
t
x-1dt
β(m,n)=1
0
xm-1(1-x)n-1dx=22
0
sin
2m-1xcos2n-1xdx
=
0
1
)1(nm
m
x
x
dx
希腊字母(GreekAlphabets)
大写小写读音大写小写读音大写小写读音
ΑαalphaΙιiotaΡρrho
ΒβbetaΚκkappaΣσ,sigma
ΓγgammaΛλlambdaΤτtau
ΔδdeltaΜμmuΥυupsilon
ΕεepsilonΝνnuΦφphi
ΖζzetaΞξxiΧχkhi
ΗηetaΟοomicronΨψpsi
ΘθthetaΠπpiΩωomega
倒数关系:sinθcscθ=1;tanθcotθ=1;cosθcθ=1
商数关系:tanθ=
cos
sin
;cotθ=
sin
cos
平方关系:cos2θ+sin2θ=1;tan2θ+1=c2θ;1+cot2θ=csc2θ
順位低
順位高
;顺位高d顺位低;
0*=
1
*=
=0*
0
1
=
0
0
00=)(0e;0=0e;1=0e
顺位一:对数;反三角(反双曲)
顺位二:多项函数;幂函数
顺位三:指数;三角(双曲)
算术平均数(Arithmeticmean)
中位数(Median)取排序后中间的那位数字
众数(Mode)次数出现最多的数值
几何平均数(Geometricmean)
调和平均数(Harmonicmean)
平均差(AverageDeviatoin)
变异数(Variance)
n
XX
n
i
2
1
)(
or
1
)(2
1
n
XX
n
i
标准差(StandardDeviation)
n
XX
n
i
2
1
)(
or
1
)(2
1
n
XX
n
i
分配
机率函数f(x)期望值E(x)变异数V(x)动差母函数
m(t)
Discrete
Uniform
2
1
(n+1)
12
1
(n2+1)
Continuous
Uniform
2
1
(a+b)
12
1
(b-a)2
Bernoulli
pxq1-x(x=0,1)ppqq+pet
Binomial
x
n
pxqn-xnpnpq(q+pet)n
Negative
Binomial
x
xk1
pkqx
Multinomialf(x
1
,x
2
,…,
x
m-1
)=
m
x
m
xx
m
ppp
xxx
n
...
!!...!
!
21
21
21
np
i
np
i
(1-p
i
)
三项
(p
1
et1+
p
2
et2+p
3
)n
Geometric
pqx-1
Hypergeometric
n
N
k
1N
nN
n
N
k
Poisson
λλ
Normal
μσ2
Beta
Gamma
Exponent
Chi-Squaredχ2=f(χ
2)=2
1
2
2
2
2
)(
2
2
1
e
n
n
n
E(χ2)=nV(χ2)=2n
Weibull
11024yottaY
11zettaZ
1exaE
10001015petaP
11012teraT兆
1gigaG十亿
1000000106megaM百万
1000103kiloK千
100102hectoH百
10101decaD十
10-1decid分,十分之一
10-2centic厘(或写作「厘」),百分之一
10-3millim毫,千分之一
00110-6micro微,百万分之一
00000110-9nanon奈,十亿分之一
-12picop皮,兆分之一
10-15femtof飞(或作「费」),千兆分之一
00110-18attoa阿
00000110-21zeptoz
-24yoctoy
本文发布于:2023-01-03 22:14:25,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/86854.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |