微积分公式表

更新时间:2023-01-03 22:14:25 阅读: 评论:0


2023年1月3日发(作者:荷兰语好学吗)

微积分公式

D

x

sinx=cosx

cosx=-sinx

tanx=c2x

cotx=-csc2x

cx=cxtanx

cscx=-cscxcotx

sinxdx=-cosx+C

cosxdx=sinx+C

tanxdx=ln|cx|+C

cotxdx=ln|sinx|+C

cxdx=ln|cx+tanx|+C

cscxdx=ln|cscx–cotx|+C

sin-1(-x)=-sin-1x

cos-1(-x)=-cos-1x

tan-1(-x)=-tan-1x

cot-1(-x)=-cot-1x

c-1(-x)=-c-1x

csc-1(-x)=-csc-1x

D

x

sin-1(

a

x

)=

22

1

xa

cos-1(

a

x

)=

tan-1(

a

x

)=

22xa

a

cot-1(

a

x

)=

c-1(

a

x

)=

22axx

a

csc-1(x/a)=

sin-1xdx=xsin-1x+21x+C

cos-1xdx=xcos-1x-21x+C

tan-1xdx=xtan-1x-ln(1+x2)+C

cot-1xdx=xcot-1x+ln(1+x2)+C

c-1xdx=xc-1x-ln|x+12x|+C

csc-1xdx=xcsc-1x+ln|x+12x|+C

sinh-1(

a

x

)=ln(x+22xa)xR

cosh-1(

a

x

)=ln(x+22ax)x≧1

tanh-1(

a

x

)=

a2

1

ln(

xa

xa

)|x|<1

coth-1(

a

x

)=

a2

1

ln(

ax

ax

)|x|>1

ch-1(

a

x

)=ln(

x

1

+

2

21

x

x

)0≦x≦1

csch-1(

a

x

)=ln(

x

1

+

2

21

x

x

)|x|>0

D

x

sinhx=coshx

coshx=sinhx

tanhx=ch2x

cothx=-csch2x

chx=-chxtanhx

cschx=-cschxcothx

sinhxdx=coshx+C

coshxdx=sinhx+C

tanhxdx=ln|coshx|+C

cothxdx=ln|sinhx|+C

chxdx=-2tan-1(e-x)+C

cschxdx=2ln|

x

x

e

e

21

1

|+C

duv=udv+vdu

duv=uv=udv+vdu

→udv=uv-vdu

cos2θ-sin2θ=cos2θ

cos2θ+sin2θ=1

cosh2θ-sinh2θ=1

cosh2θ+sinh2θ=cosh2θ

D

x

sinh-1(

a

x

)=

22

1

xa

cosh-1(

a

x

)=

22

1

ax

tanh-1(

a

x

)=

22xa

a

coth-1(

a

x

)=

ch-1(

a

x

)=

22xax

a

csch-1(x/a)=

22xax

a

sinh-1xdx=xsinh-1x-21x+C

cosh-1xdx=xcosh-1x-12x+C

tanh-1xdx=xtanh-1x+ln|1-x2|+C

coth-1xdx=xcoth-1x-ln|1-x2|+C

ch-1xdx=xch-1x-sin-1x+C

csch-1xdx=xcsch-1x+sinh-1x+C

sin3θ=3sinθ-4sin3θ

cos3θ=4cos3θ-3cosθ

→sin3θ=(3sinθ-sin3θ)

→cos3θ=(3cosθ+cos3θ)

sinx=

j

eejxjx

2



cosx=

2

jxjxee

sinhx=

2

xxee

coshx=

2

xxee

正弦定理:

sin

a

=

sin

b

=

sin

c

=2R

余弦定理:a2=b2+c2-2bccosα

b2=a2+c2-2accosβ

c2=a2+b2-2abcosγ

sin(α±β)=sinαcosβ±cosαsinβ

cos(α±β)=cosαcosβsinαsinβ

2sinαcosβ=sin(α+β)+sin(α-β)

sinα+sinβ=2sin(α+β)cos(α-β)

sinα-sinβ=2cos(α+β)sin(α-β)

cosα+cosβ=2cos(α+β)cos(α-β)

a

b

c

α

β

γ

R

2cosαsinβ=sin(α+β)-sin(α-β)

2cosαcosβ=cos(α-β)+cos(α+β)

2sinαsinβ=cos(α-β)-cos(α+β)

cosα-cosβ=-2sin(α+β)sin(α-β)

tan(α±β)=





tantan

tantan

,cot(α±β)=





cotcot

cotcot

ex=1+x+

!2

2x

+

!3

3x

+…+

!n

xn

+…

sinx=x-

!3

3x

+

!5

5x

-

!7

7x

+…+

)!12(

)1(12



n

xnn

+…

cosx=1-

!2

2x

+

!4

4x

-

!6

6x

+…+

)!2(

)1(2

n

xnn

+…

ln(1+x)=x-

2

2x

+

3

3x

-

4

4x

+…+

)!1(

)1(1



n

xnn

+…

tan-1x=x-

3

3x

+

5

5x

-

7

7x

+…+

)12(

)1(12



n

xnn

+…

(1+x)r=1+rx+

!2

)1(rr

x2+

!3

)2)(1(rrr

x3+…-1

n

i1

1=n

n

i

i

1

=n(n+1)

n

i

i

1

2=

6

1

n(n+1)(2n+1)

n

i

i

1

3=[n(n+1)]2

Γ(x)=

0

tx-1e-tdt=2

0

t2x-12tedt=

0

)

1

(ln

t

x-1dt

β(m,n)=1

0

xm-1(1-x)n-1dx=22

0

sin

2m-1xcos2n-1xdx

=

0

1

)1(nm

m

x

x

dx

希腊字母(GreekAlphabets)

大写小写读音大写小写读音大写小写读音

ΑαalphaΙιiotaΡρrho

ΒβbetaΚκkappaΣσ,sigma

ΓγgammaΛλlambdaΤτtau

ΔδdeltaΜμmuΥυupsilon

ΕεepsilonΝνnuΦφphi

ΖζzetaΞξxiΧχkhi

ΗηetaΟοomicronΨψpsi

ΘθthetaΠπpiΩωomega

倒数关系:sinθcscθ=1;tanθcotθ=1;cosθcθ=1

商数关系:tanθ=

cos

sin

;cotθ=

sin

cos

平方关系:cos2θ+sin2θ=1;tan2θ+1=c2θ;1+cot2θ=csc2θ

順位低

順位高

;顺位高d顺位低;

0*=

1

*=

=0*

0

1

=

0

0

00=)(0e;0=0e;1=0e

顺位一:对数;反三角(反双曲)

顺位二:多项函数;幂函数

顺位三:指数;三角(双曲)

算术平均数(Arithmeticmean)

中位数(Median)取排序后中间的那位数字

众数(Mode)次数出现最多的数值

几何平均数(Geometricmean)

调和平均数(Harmonicmean)

平均差(AverageDeviatoin)

变异数(Variance)

n

XX

n

i

2

1

)(

or

1

)(2

1



n

XX

n

i

标准差(StandardDeviation)

n

XX

n

i

2

1

)(

or

1

)(2

1



n

XX

n

i

分配

机率函数f(x)期望值E(x)变异数V(x)动差母函数

m(t)

Discrete

Uniform

2

1

(n+1)

12

1

(n2+1)

Continuous

Uniform

2

1

(a+b)

12

1

(b-a)2

Bernoulli

pxq1-x(x=0,1)ppqq+pet

Binomial

x

n

pxqn-xnpnpq(q+pet)n

Negative

Binomial



x

xk1

pkqx

Multinomialf(x

1

,x

2

,…,

x

m-1

)=

m

x

m

xx

m

ppp

xxx

n

...

!!...!

!

21

21

21

np

i

np

i

(1-p

i

)

三项

(p

1

et1+

p

2

et2+p

3

)n

Geometric

pqx-1

Hypergeometric

n

N

k

1N

nN

n

N

k

Poisson

λλ

Normal

μσ2

Beta

Gamma

Exponent

Chi-Squaredχ2=f(χ

2)=2

1

2

2

2

2

)(

2

2

1

e

n

n

n

E(χ2)=nV(χ2)=2n

Weibull

11024yottaY

11zettaZ

1exaE

10001015petaP

11012teraT兆

1gigaG十亿

1000000106megaM百万

1000103kiloK千

100102hectoH百

10101decaD十

10-1decid分,十分之一

10-2centic厘(或写作「厘」),百分之一

10-3millim毫,千分之一

00110-6micro微,百万分之一

00000110-9nanon奈,十亿分之一

-12picop皮,兆分之一

10-15femtof飞(或作「费」),千兆分之一

00110-18attoa阿

00000110-21zeptoz

-24yoctoy

本文发布于:2023-01-03 22:14:25,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/86854.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

下一篇:中考成绩公布
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图