百度文库-让每个人平等地提升自我
1
知识点一:一元二次不等式的定义
只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等
式。比如:.
任意的一元二次不等式,总可以化为一般形式:或
.
知识点二:一般的一元二次不等式的解法
设一元二次方程的两根为且,,
则相应的不等式的解集的各种情况如下表:
注意:
(1)一元二次方程的两根是相应的不等式
的解集的端点的取值,是抛物线与轴的交点的横坐标;
(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先
利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;
(3)解集分三种情况,得到一元二次不等式
与的解集。
知识点三:解一元二次不等式的步骤
(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;
(2)写出相应的方程,计算判别式:
①时,求出两根,且(注意灵活运用因式分解和配
方法);
②时,求根;
③时,方程无解
(3)根据不等式,写出解集.
知识点四:用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过
程规律方法指导
1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正
数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;
3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨
论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找
到不等式的解集与其系数之间的关系;
5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数
二次函数
()的图象
百度文库-让每个人平等地提升自我
2
经典例题透析
类型一:解一元二次不等式
1.解下列一元二次不等式
(1);(2);(3)
思路点拨:转化为相应的函数,数形结合解决,或利用符号法则解答.
总结升华:
1.初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结
合的分析能力;
2.当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当
且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).
3.当二次项的系数小于0时,一般都转化为大于0后,再解答.
举一反三:
【变式1】解下列不等式
(1);(2)
(3);(4).
【变式2】解不等式:
类型二:已知一元二次不等式的解集求待定系数
2.不等式的解集为,求关于的不等式
的解集。
百度文库-让每个人平等地提升自我
3
总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据
不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的
解集与其系数之间的关系,这一点是解此类题的关键。
举一反三:
【变式1】不等式ax2+bx+12>0的解集为{x|-3<x<2},则a=_______,b=________。
【变式2】已知的解为,试求、,并解不等式
.
【变式3】已知关于的不等式的解集为,求关于的不等式
的解集.
类型三:二次项系数含有字母的不等式恒成立恒不成立问题
3.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,
求实数m的取值范围。
思路点拨:不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题
还需要讨论二次项的系数。
总结升华:情况(1)是容易忽略的,所以当我们遇到二次项系数含有字母时,一
般需讨论。
举一反三:【变式1】若关于的不等式的解集为空集,
求的取值范围.
百度文库-让每个人平等地提升自我
4
【变式2】若关于的不等式的解为一切实数,求
的取值范围.
【变式3】若关于的不等式的解集为非空集,求
的取值范围.
百度文库-让每个人平等地提升自我
5
类型四:含字母系数的一元二次不等式的解法
4.解下列关于x的不等式
(1)x2-2ax≤-a2+1;
(2)x2-ax+1>0;
(3)x2-(a+1)x+a<0;
总结升华:对含字母的二元一次不等式,一般有这样几步:
①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;
②求根:求相应方程的根。当无法判断判别式与0的关系时,要引入讨论,分类求
解;
③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论。
举一反三:
【变式1】解关于x的不等式:
【变式2】解关于的不等式:()
5.解关于x的不等式:ax2-(a+1)x+1<0。
总结升华:熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有
字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”。
百度文库-让每个人平等地提升自我
6
举一反三:
【变式1】解关于x的不等式:(ax-1)(x-2)≥0;
【变式2】解关于x的不等式:ax2+2x-1<0;
【变式3】解关于x的不等式:ax2-x+1>0
百度文库-让每个人平等地提升自我
7
学习成果测评
基础达标:
1.不等式x2-ax-12a2<0(其中a<0)的解集为()
A.(-3a,4a)B.(4a,-3a)C.(-3,-4)D.(2a,6a)
2.使有意义的x的取值范围是()
A.B.
C.D.
3.不等式ax2+5x+c>0的解集为,则a,c的值为()
A.a=6,c=1B.a=-6,c=-1C.a=1,c=1D.a=-1,c=-6
4.解不等式得到解集,那么的值等于()
A.10B.-10C.14D.-14
5.不等式x2-ax-b<0的解集是{x|2<x<3},则bx2-ax-1>0的解集是()
A.B.
C.D.
6.抛物线y=-x2+5x-5上的点位于直线y=1的上方,则自变量x的取值范围
是____。
7.如果关于x的方程x2-(m-1)x+2-m=0的两根为正实数,则m的取值范围
是____。8.解下列不等式
(1)14-4x2≥x;(2)x2+x+1>0;
(3)2x2+3x+4<0;(4);
(5);(6);(7)
9.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}。
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0。
10.不等式mx2+1>mx的解集为实数集R,求实数m的取值范围.
百度文库-让每个人平等地提升自我
8
能力提升:
11.不等式的解集是全体实数,则a的取值范围是()
A.B.C.D.
12.对于满足0≤p≤4的实数p,使恒成立的x的取值范
围是__.
13.已知的解集为,则不等式
的解集是________.
14.14.若函数的定义域为R,则a的取值范围为
________________.
15.若使不等式和同时成立的x的值使关于x的不
等式也成立,则a的取值范围是________________.
16.16.若不等式ax2+bx+c>0的解集为{x|2<x<3},则不等式ax2-bx+c<0的解
集是___________;不等式cx2+bx+a>0的解集是_____________.
17.
18.
17.已知,
18.(1)如果对一切x∈R,f(x)>0恒成立,求实数a的取值范围;
19.(2)如果对x∈[-3,1],f(x)>0恒成立,求实数a的取值范围.
18.解下列关于x的不等式;
综合探究:
19.解关于x的不等式:.
20.设集合A={x|x2-2x-8<0},B={x|x2+2x-3>0},C={x|x2-3ax+2a2<0},若C(A
∩B),求实数a的取值范围.
本文发布于:2023-01-03 05:37:11,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/82450.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |