Onthispage:
Reactionmechanisms,molecularity
Collisiontheoryofchemicalchange
Anatomyofmoleclarcollisions
Activationenergy
Catalysts
Temperatureandkineticenergy
TheArrheniuslaw
Deteriningtheactivationenergy
Thepre-exponentialfactor
Whatyoushouldbeabletodo
Conceptmap
GeneralChemistryVirtualTextbook→kinetics/dynamics→collision/
activaton
Collisionandactivation
theArrheniusLaw
index|ratelaws1|ratelaws2|activation|mechanisms|solutions|catalysis|experimental
Note:thisdocumentwillprintinanappropriatelymodifiedformat(15pages)
Whyaresomereactionssomuchfaster
thanothers,andwhyarereactionrates
independentofthethermodynamic
tendencyofthereactiontotakeplace?
Thearethecentralquestionswe
gso,weopen
thedoortotheimportanttopicof
reactionmechanisms:whathappensat
themicroscopiclevelwhenchemical
reactionstakeplace?Wecanthank
Arrheniusforunlocking
thisdoor!
Tokeepthingsassimpleaspossible,we
willrestrictourlftoreactionsthat
e
principleswillapplytoreactionsin
liquidsandsolids,butwithadded
complicationsthatwewilldiscussinalaterunit.
1Reactionmechanisms
Themechanismofachemicalreactionisthequenceofactualevents
theeventsconstitutesanelementarystepthatcanbereprentedas
acoming-togetherofdiscreteparticles("collison")orasthebreaking-up
ofamolecule("dissociation")ecularentitythat
emergesfromeachstepmaybeafinalproductofthereaction,oritmight
beanintermediate—aspeciesthatiscreatedinoneelementarystep
anddestroyedinasubquentstep,andthereforedoesnotappearinthe
netreactionequation.
Stepbystep...
Areactionmechanismmustultimatelybeunderstoodasa"blow-by-blow"
descriptionofthemolecular-leveleventswhoquenceleadsfrom
lementarysteps(alsocalledelementary
reactions)arealmostalwaysverysimpleonesinvolvingone,two,or
[rarely]threechemicalspecieswhichareclassified,respectively,as
unimolecularA→byfarthemostcommon
bimolecularA+B→
termolecularA+B+C→veryrare
Inagasatroom
temperatureandnormal
atmosphericpressure,
therewillbeabout10
33
collisionsineachcubic
centimetreeverycond.
Ifeverycollisionbetween
tworeactantmolecules
yieldedproducts,all
reactionswouldbe
completeinafractionofa
cond.
2Collisiontheoryofchemicalchange
Moleculesmustcollidebeforetheycanreact
Thisfundamentalrulemustguideanyanalysisofanordinarychemical
reactionmechanism.
etic
theoryofgastellsusthatforevery1000binarycollisions,therewillbeonly
-way
collisionsaresoimprobablethatthisprocesshasneverbeendemonstratedin
anelementaryreaction.
Considerasimplebimolecularstep
A+B→products
Clearly,iftwomoleculesAandBaretoreact,theymustapproachcloly
enoughtodisruptsomeoftheirexistingbondsandtopermitthecreation
suchan
encounteracollision.
ThefrequencyofcollisionsbetweenAandBinagaswillbeproportional
totheconcentrationofeach;ifwedouble[A],thefrequencyofA-B
collisionswilldouble,anddoubling[B]l
collisionsleadtoproducts,thantherateofabimolecularprocesswillbe
first-orderinAandB,orcond-orderoverall:
rate=k[A][B]
but...
Notallcollisionsareequal
Whentwobilliardballscollide,
isalsothemostlikelyoutcomeifthereactionbetweenAandBrequiresa
significantdisruptionorrearrangementofthebondsbetweentheiratoms.
Inordertoeffectivelyinitiateareaction,collisionsmustbesufficiently
energetic(kineticenergy)out
thisfurtheron.
Andthereisoftenoneadditional
reactions,
especiallythoinvolvingmore
complexmolecules,thereacting
speciesmustbeorientedina
mannerthatisappropriateforthe
mple,in
thegas-phareactionof
dinitrogenoxidewithnitricoxide,
theoxygenendofN
2
Omusthitthe
nitrogenendofNO;reversingthe
orientationofeithermoleculepreventsthereaction.
Owingtotheextensiverandomizationofmolecularmotionsinagasorliquid,
therearealwaynoughcorrectly-orientedmoleculesforsomeofthe
our,themorecriticalthisorientational
requirementis,thefewercollisionswillbeeffective.
Anatomyofacollision
Energeticcollisionsbetweenmoleculescauinteratomicbondstostretch
andbendfarther,temporarilyweakeningthemsothattheybecomemore
tionofthebondscanexpotheir
associatedelectroncloudstointeractionswithotherreactantsthatmight
leadtotheformationofnewbonds.
Chemicalbondshavesomeofthepropertiesof
mechanicalsprings,whopotentialenergy
dependsontheextenttowhichtheyare
om-to-atom
bondcanbedescribedbyapotentialenergy
diagramthatshowshowitnergychanges
ebondabsorbnergy
(eitherfromheatingorthroughacollision),itis
elevatedtoahigherquantizedvibrationalstate
(indicatedbythehorizontallines)thatweakens
thebondasitslengthoscillatesbetweenthe
extendedlimitscorrespondingtothecurve.
Aparticularcollisionwilltypicallyexcitea
about10–13condthixcitation
getsdistributedamongtheotherbondsinthemoleculeinrathercomplex
andunpredictablewaysthatcanconcentratetheaddedenergyata
ectedbondcanstretchandbend
farther,thebonddoesnot
breakbypurestretching,itcanbecomedistortedortwistedsoasto
exponearbyelectroncloudstointeractionswithotherreactantsthat
mightencourageareaction.
Consider,forexample,theisomerizationofcyclopropanetopropenewhich
takesplaceatfairlyhightemperaturesinthegaspha.
Wecanimaginethecollision-to-productquenceinthefollowing[grossly
oversimplified]way:
Notethat
Tokeepthingssimple,
reasonablebecauC–CbondsareweakerthenC–Hbondsandthuslesslikely
tobeaffected.
Thecollisionatwillusuallybewithanothercyclopropanemolecule,but
becaunopartofthecollidingmoleculegetsincorporatedintotheproduct,it
caninprinciplebeanoblegasorsomeothernon-reactingspecies;
AlthoughtheC–Cbondsincyclopropaneareallidenticial,theinstantaneous
localizationofthecollisionalenergycandistortthemoleculeinvariousways(
),leadingtoaconfigurationsufficientlyunstabletoinitiatethe
rearrangementtotheproduct.
Unimolecularprocessalsobeginwithacollision
Thecyclopropaneisomerizationdescribedaboveistypicalofmany
decompositionreactionsthatarefoundtofollowfirst-orderkinetics,
bout1921,chemistsdid
sout
thatthemechanismsofsuchreactionsarereallyrathercomplicated,and
Thechemicalreactions
associatedwithmostfood
spoilagearecatalyzedby
enzymesproducedbythe
bacteriawhichmediate
theprocess.
HereisashortYouTube
videoonactivation
energy.
The"reactioncoordinate"plottedalongtheabscissa
reprentsthechangesinatomiccoordinatesasthe
ery
simplestelementaryreactionsitmightcorrespondtothe
stretchingortwistingofaparticularbond,andbeshown
ral,however,thereactioncoordinateis
aratherabstractconceptthatcannotbetiedtoany
singlemeasurableandscaleablequantity.
Theactivatedcomplex(alsoknownasthetransition
state)reprentsthestructureofthesystemasitexists
not
correpondtoanidentifiableintermediatestructure(which
wouldmoreproperlybeconsideredtheproductofa
parateelementaryprocess),butrathertowhatever
configurationofatomxistsduringthecollision,which
lastsforonlyabout0.1picocond.
Activationenergydiagramsalwaysincorporatethe
energetics(ΔUorΔH)ofthenetreaction,butitis
importanttounderstandthatthelatterquantitiesdepend
solelyonthethermodynamicsoftheprocesswhichare
ans
thatthesamereactioncanexhibitdifferentactivation
energiesifitcanfollowalternativepathways.
Withafewexceptionsforverysimpleprocess,
activationenergydiagramsarelargelyconceptual
constructsbadonourstandardcollisionmodelfor
dbeunwitoreadtoomuch
intothem.
ails
arebeyondthescopeofthiscour,butagoodintroductioncanbefound
apage.
Activationenergy
Highertemperatures,fasterreactions
Itiscommonknowledgethatchemicalreactionsoccurmorerapidlyat
neknowsthatmilkturnssourmuchmore
rapidlyifstoredatroomtemperatureratherthaninarefrigerator,butter
goesrancidmorequicklyinthesummerthaninthewinter,andeggs
same
reason,cold-bloodedanimalssuchasreptilesandinctstendtobe
noticeablymorelethargiconcolddays.
lenergyrelates
emperatureris,
moleculesmovefasterandcollidemorevigorously,greatlyincreasingthe
likelyhoodofbondcleavagesandrearrangemensasdescribedabove.
Activationenergydiagrams
Mostreactionsinvolvingneutralmoleculescannottakeplaceatalluntil
theyhaveacquiredtheenergyneededtostretch,bend,orotherwi
iticalenergyisknownastheactivation
tionenergydiagramsofthekindshown
belowplotthetotalenergyinputtoareactionsystemasitproceedsfrom
reactantstoproducts.
Inexaminingsuchdiagrams,takespecialnoteofthefollowing:
Galleryofactivationenergyplots
Activationenergydiagramscandescribebothexothermicandendothermic
reactions:
...andtheactivationenergiesoftheforwardreactioncanbelarge,small,
orzero(independently,ofcour,ofthevalueofΔH):
Processwithzeroactivationenergymost
commonlyinvolvethecombinationof
oppositely-chargedionsorthepairingupof
electronsinfreeradicals,asinthe
dimerizationofnitricoxide(whichisanodd-
electronmolecule).
Inthisplotforthedissociationof
bromine,theE
a
isjusttheenthalpy
ofatomization
Br
2
(g)→2Br·(g)
andthereactioncoordinate
correspondsroughlytothe
stretchingofthevibrationally-
"activated
complex",ifitisconsideredto
exist,isjustthelast,longest
"stretch".Thereverreaction,
beingtherecombinationoftwo
radicals,occursimmediatelyon
contact.
Wheredoestheactivationenergycomefrom?
Inmostcas,theactivationenergyis
suppliedbythermalenergy,either
throughintermoleculrcollisionsor(in
thecaofthermaldissocation)by
thermalexcitationofabond-stretching
Areviewoftheprinciplesof
gasmolecularvelocitiesand
theBoltzmanndistribution
canbefoundonthe"KMT-
classic"page.
vibrationtoasufficientlyhighquantum
level.
Asproductsareformed,theactivation
energyisreturnedintheformof
vibrationalenergywhichisquickly
degradedtoheat.
It'sworthnoting,however,thatothersourcesofactivationenergyare
sometimesapplicable:
Absorptionoflightbyamolecule(photoexcitation)canbeaverycleanand
efficient,butitdoesn''snotenoughthatthewavelengthofthe
lightcorrespondtotheactivationenergy;itmustalsofallwithintheabsorption
spectrumofthemolecule,and(inacomplexmolecule)enoughofitmustend
upintherightpartofthemolecule,suchasinaparticularbond.
lescapableoflosingorgainingelectrons
atthesurfaceofanelectrodecanundergoactivationfromanextrapotential
(knownastheovervoltage)
electrodesurfaceoftenplaysanactiverole,sotheprocessisalsoknownas
electrocatalysis.
Catalystscanreduceactivationenergy
Acatalystisusuallydefinedasasubstancethatspeedsupa
ecifically,a
catalystprovidesanalternative,loweractivationenergy
,theyare
vitallyimportanttochemicaltechnology;approximately95%
ofindustrialchemicalprocessinvolvecatalystsofvarious
tion,mostbiochemicalprocessthatoccurin
livingorganismsaremediatedbyenzymes,whicharecatalysts
madeofproteins.
Itisimportanttounderstandthatacatalystaffectsonlythe
kineticsofareaction;itdoesnotalterthethermodynamic
ereisasinglevalue
ofΔHforthetwopathwaysdepictedintheplotontheright.
Temperatureandkineticenergy
Inthevastmajorityofcas,wedependonthermal
actvation,sothemajorfactorweneedtoconsideris
whatfractionofthemoleculespossnoughkinetic
energytoreactatagiventemperature.
Accordingtokineticmoleculartheory,apopulationofmoleculesatagiven
temperatureisdistributedoveravarietyofkineticenergiesthatis
describedbytheMaxwell-Boltzmandistributionlaw.
Thetwodistributionplotsshownhereareforalower
temperatureT
1
andahighertemperatureT
2
.Thearea
undereachcurvereprentsthetotalnumberof
moleculeswhoenergiesfallwithinparticularrange.
Theshadedregionsindicatethenumberofmolecules
whicharesufficientlyenergetictomeettherequirements
dictatedbythetwovaluesofE
a
thatareshown.
Itisclearfromtheplotsthatthefractionofmolecules
whokineticenergyexceedstheactivationenergy
thereasonthatvirtuallyallchemicalreactions(andall
elementaryreactions)aremorerapidathigher
temperatures.
2TheArrheniuslaw
By1890itwascommonknowledgethathigher
temperaturesspeedupreactions,oftendoublingtherate
fora10-degreeri,butthereasonsforthiswerenot
y,in1899,theSwedishchemistSvante
Arrhenius(1859-1927)combinedtheconceptsofactivation
energyandtheBoltzmanndisributionlawintooneofthe
mostimportantrelationshipsinphysicalchemistry:
Takeamomenttofocusonthemeaningofthiquation,neglectingtheAfactor
forthetimebeing.
First,notethatthisisanotherformoftheexponentialdecaylawwediscusdin
"decaying"hereisnottheconcentration
ofareactantasafunctionoftime,butthemagnitudeoftherateconstantasa
functionoftheexponent–E
a
/tisthesignificanceofthisquantity?If
yourecallthatRTistheaveragekineticenergy,itwillbeapparentthatthe
exponentisjusttheratiooftheactivationenergyEatotheaveragekineticenergy.
Thelargerthisratio,thesmallertherate(hencethenegativesign.)Thismeans
thathightemperatureandlowactivationenergyfavorlargerrateconstants,and
authetermsoccurinanexponent,their
effectsontheratearequitesubstantial.
Thetwoplotsbelowshowtheeffectsoftheactivationenergy(denoted
herebyE‡)odestactivationenergyof
50kJ/molreducestheratebyafactorof108.
Thelogarithmicscaleintheright-handplotleadstonicestraightlines,as
describedunderthenextheadingbelow.
Lookingattheroleof
temperature,weea
similareffect.
(Ifthex-axiswerein
"kilodegrees"theslopeswouldbe
morecomparableinmagnitude
withthoofthekilojouleplotat
theaboveright.)
Determiningtheactivationenergy
TheArrheniuquation
canbewritteninanon-exponentialformwhichisoftenmoreconvenient
thelogarithmsofbothsides
andparatingtheexponentialandpre-exponentialtermsyields
whichistheequationofastraightlinewhoslopeis–E
a
/fords
asimplewayofdeterminingtheactivationenergyfromvaluesofk
obrvedatdifferenttemperatures;wejustplotlnkasafunctionof1/T.
Thusfortheisomerizationofcyclopropanetopropene
thefollowingdatawereobtained(calculatedvaluesshadedinpink):
T,°C477523577623
1/T,K–1×1031.331.251.181.11
k,s–10.000180.0027
0.0300.26
lnk–8.62–5.92–3.51–1.35
Fromthecalculatedslope,wehave
–(E
a
/R)=–3.27×104K
E
a
=–(8.314Jmol–1K–1)(–3.27×104K)=273kJmol–1
Comment:Thisactivationenergyisratherhigh,whichisnotsurprisingbecaua
carbon-carbonbondmustbebrokeninordertoopenthecyclopropanering.(C–Cbond
energiesaretypicallyaround350kJ/mol.)Thisiswhythereactionmustbecarriedoutat
hightemperature.
Youdon'talwaysneedaplot
(...ifyouarewillingtoliveabitdangerously!)Sincethelnk-vs.-1/Tplot
yieldsastraightline,itisoftenconvenienttoestimatetheactivation
owthisis
done,considerthat
(...inwhichwehavemadetheln-Atermdisappearbysubtractingthe
expressionsforthetwoln-kterms.)Solvingtheexpressionontherightfor
theactivationenergyyields
ProblemExample1
Awidelyudrule-of-thumbforthetemperaturedependenceofareaction
rateisthataten-C°riinthetemperatureapproximatelydoublestherate.
(Thisisobviouslynotgenerallytrue,especiallywhenastrongcovalentbond
mustbebroken.)Butforareactionthatdoesshowthisbehavior,whatwould
theactivationenergybe?
Solution:tutinginto
theaboveexpressionyields
=(8.314)(0.693)/(.00339-0.00328)
=(5.76Jmol–1K–1)/(0.00011K–1)=52400Jmol–1=52.4kJmol–1
ProblemExample2
Ittakesabout3.0minutestocookahard-boiledegginLosAngeles,butat
thehigheraltitudeofDenver,wherewaterboilsat92°C,thecookingtimeis
sinformationtoestimatetheactivationenergyforthe
coagulationofeggalbuminprotein.
Solution:TheratiooftherateconstantsattheelevationsofLAandDenver
is4.5/3.0=1.5,
thesubscripts2and1referringtoLAandDenverrespectively,wehave
E
a
=(8.314)(ln1.5)/(1/365–1/273)=(8.314)(.405)/(0.00274–
0.00366)
=(3.37Jmol–1K–1)/(0.000923K–1)=3650Jmol–1=3.65kJmol–1
Comment:Thisratherlowvalueemsreasonablebecauproteindenaturationinvolvesthe
disruptionofrelativelyweakhydrogenbonds;nocovalentbondsarebroken.
Thepre-exponentialfactor
Itisnowtimetofocusinonthepre-exponentialtermAin
beenneglectingitbecau
itisnotdirectlyinvolvedinrelatingtemperatureand
activationenergy,
sinceAmultipliestheexponentialterm,itsvalueclearlycontributestothe
valueoftherateconstantandthusoftherate.
RecallthattheexponentialpartoftheArrheniuquationexpressthe
fractionofreactantmoleculesthatpossnoughkineticenergytoreact,
actioncanrunfrom
zerotonearlyunity,dependingonthemagnitudesofE
a
andofthe
temperature.
Ifthisfractionwereunity,theArrheniuslawwouldreduceto
k=A
Inotherwords,Aisthefractionofmoleculesthatwouldreactifeitherthe
activationenergywerezero,orifthekineticenergyofallmolecules
exceededE
a
—admittedly,anuncommonscenario.
It'sallaboutcollisions
Sowhatwouldlimittherateconstantiftherewerenoactivationenergy
requirements?Themostobviousfactorwouldbetherateatwhich
nbecalculatedfromkinetic
moleculartheoryandisknownasthefrequency-orcollisionfactorZ.
Insomereactions,therelativeorientationofthe
moleculesatthepointofcollisionisimportant,so
wecanalsodefineageometricalorstericfactor
(commonlydenotedbyρ(Greeklowercarho).
Ingeneral,wecanexpressAastheproductofthe
twofactors:
A=Zρ
Valuesofρaregenerallyverydifficulttoasss;theyaresometime
Cricketsandpopcorn
Manybiologicalprocesxhibitatemperaturedependence
thatfollowstheArrheniuslaw,andcanthusbecharacterized
sinterestingDartmouthU.
pagethatlooksatthekineticsofcricketchirps.
InanarticleontheKineticsofPoppingofPopcorn(Cereal
Chemisty82(1):53-59),foundthat
poppingfollowsafirst-orderratelawwithanactivation
energyof53.8kJ/mol.
Thiskindofelectrophilic
additionreactioniswell-
knowntoallstudentsof
nice(butnot-for-
beginners)discussionof
suchreactionsandtheir
mechanismscanbefound
here.
estimatedbycomparingtheobrvedrateconstantwiththeoneinwhich
AisassumedtobethesameasZ.
Directionmakesadifference
Themorecomplicatedthestructuresofthereactants,themorelikelythat
thevalueoftherateconstantwilldependonthetrajectoriesatwhichthe
reactantsapproacheachother.
Weshowedoneexampleofthisnearthetopofthepage,butforanother,
considertheadditionofahydrogenhalidesuchasHCltothedoublebond
ofanalkene,convertingittoachloroalkane.
ExperimentshaveshownthatthereactiononlytakesplacewhentheHCl
moleculeapproachesthealkenewithitshydrogen-end,andinadirection
thatisapproximatelyperpendiculartothedoublebond,asshownat
below.
Thereasonforthisbecomesapparentwhenwerecallthat
HClishighlypolarowingtothehighelectronegativityof
chlorine,sothatthehydrogenendofthemoleculeis
slightlypositive.
Thedoublebondofetheneconsistsoftwocloudsof
negativechargecorrespondingtotheσ(sigma)andπ(pi)
ter,whichextendsaboveand
belowtheplaneoftheC
2
H
4
molecule,interactswithand
attractstheHClmolecule.
If,instead,theHClapproacheswithitschlorineend
leadingasin
,electrostaticrepulsionbetweenthelikechargescausthe
twomoleculestobounceawayfromeachotherbeforeanyreactioncantake
ethinghappensin
;theelectronegativitydifferencebetween
carbonandhydrogenistoosmalltomaketheC–Hbondsufficientlypolarto
attracttheincomingchlorineatom.
Nowthatyouknowwhatittakestogetareactionstarted,youareready
forthenextlessonthatdescribestheiractualmechanisms.
Whatyoushouldbeabletodo
Thelessonyoushouldtakefromthixampleisthatonceyoustart
combiningavarietyofchemicalprinciples,yougraduallydevelopwhatmight
becalled"chemicalintuition"whichyoucanapplytoawidevarietyof
farmoreimportantthanmemorizingspecificexamples.
Makesureyouthoroughlyunderstandthefollowingesntialideaswhich
peciallyimortantthatyouknowthe
precimeaningsofallthegreen-highlightedtermsinthecontextofthis
topic.
Explainthemeaningofareactionmechanismanddefineelementarystepand
intermediate.
Describetheroleofcollisionsinreactionmechanisms,andexplainwhynotall
collisionsleadtotheformationofproducts.
Sketchoutactivationenergydiagramsforsimplereactionsthatare
endothermicorexothermic,
Explainhowanactivatedcomplexdiffersfromanintermediate.
Definecatalyst,andsketchoutanactivationenergydiagramthatillustrates
howcatalystswork.
ExplainthesignificanceofthevarioustermsthatappearintheArrheniusLaw.
SketchoutatypicalArrheniusLawplotforahypotheticalreactionathigherand
lowertemperatures.
Explainhowtheactivationenergyofareactioncanbedetermined
experimentally.
Explainthesignificanceofthevarioustermsthatappearinthepre-exponential
factoroftheArrheniuquation.
ConceptMap
index|ratelaws1|ratelaws2|activation|mechanisms|solutions|catalysis|experimental
©2009byStephenLower-lastmodified2011-07-29
ForinformationaboutthisWebsiteortocontacttheauthor,
pleaetheChem1VirtualTextbookhomepage.
ThisworkislicendunderaCreativeCommonsAttribution-ShareAlike3.0Licen.
本文发布于:2023-01-02 13:52:08,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/78107.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |