Conditionalindependence
1
Conditionalindependence
llreprentsa
ntsR,BandYarereprentedbytheareasshadedred,blue
probabilitiesoftheeventsareshadedareaswith
examplesRandBareconditionallyindependentgivenY
becau:Pr(RcapBmidY)=Pr(RmidY)Pr(BmidY),Toethatthisistheca,
oneneedstorealithatPr(R∩B|Y)istheprobabilityofanoverlapofRandBintheY
,inthepictureontheleft,therearetwosquareswhereRandBoverlapwithin
theYarea,andtheYareahastwelvesquares,Pr(R∩B|Y)=tfrac{2}{12}=
tfrac{1}{6}.Similarly,Pr(R|Y)=tfrac{4}{12}=tfrac{1}{3}andPr(B|Y)=
tfrac{6}{12}=tfrac{1}{2}.butnotconditionallyindependentgivennotY
becau:Pr(RcapBmidtext{not}Y)not=Pr(Rmidmbox{not}Y)Pr(Bmid
text{not}Y).,
Inprobabilitytheory,twoeventsRand
Bareconditionallyindependent
givenathirdeventYprecilyifthe
occurrenceornon-occurrenceofRand
theoccurrenceornon-occurrenceofB
areindependenteventsintheir
conditionalprobabilitydistribution
rwords,RandBare
conditionallyindependentifandonly
if,givenknowledgeofwhetherY
occurs,knowledgeofwhetherRoccurs
providesnoinformationonthe
likelihoodofBoccurring,and
knowledgeofwhetherBoccurs
providesnoinformationonthe
likehoodofRoccurring.
Inthestandardnotationofprobability
theory,RandBareconditionally
independentgivenYifandonlyif
orequivalently,
TworandomvariablesXandYareconditionallyindependentgivenathirdrandomvariableZifandonlyiftheyare
,XandYareconditionallyindependent
givenZifandonlyif,givenanyvalueofZ,theprobabilitydistributionofXisthesameforallvaluesofYandthe
probabilitydistributionofYisthesameforallvaluesofX.
TwoeventsRandBareconditionallyindependentgivenaσ-algebraΣif
wheredenotestheconditionalexpectationoftheindicatorfunctionoftheevent,,giventhe
,
TworandomvariablesXandYareconditionallyindependentgivenaσ-algebraΣiftheaboveequationholdsforall
Rinσ(X)andBinσ(Y).
TworandomvariablesXandYareconditionallyindependentgivenarandomvariableWiftheyareindependent
givenσ(W):theσ-commonlywritten:
Thisisread"XisindependentofY,givenW";theconditioningappliestothewholestatement:"(Xisindependent
ofY)givenW".
Conditionalindependence
2
IfWassumesacountabletofvalues,thisiquivalenttotheconditionalindependenceofXandYfortheeventsof
theform[W = w].Conditionalindependenceofmorethantwoevents,orofmorethantworandomvariables,is
definedanalogously.
ThefollowingtwoexamplesshowthatX⊥YneitherimpliesnorisimpliedbyX⊥Y|,suppoWis0with
= 0takeXandYtobeindependent,eachhavingthevalue0with
probability0.99, = 1,XandYareagainindependent,butthistimetheytakethevalue
⊥Y | dYaredependent,becauPr(X = 0)
becauPr(X = 0)= 0.5,butifY = 0thenit'sverylikelythatW = 0andthusthatX = 0aswell,so
Pr(X = 0|Y = 0) > condexample,suppoX⊥Y,eachtakingthevalues0and1withprobability 0.5.
LetWbetheproductX×enW = 0,Pr(X = 0) = 2/3,butPr(X = 0|Y = 0) = 1/2,soX ⊥ Y |
inMurphy'stutorial
[2]
whereXandYtakethevalues"brainy"and
"sporty".
UsinBayesianstatistics
Letpbetheproportionofvoterswhowillvote"yes"nganopinionpoll,one
= 1, ..., n,letX
i
= 1or0accordingastheithchonvoterwill
orwillnotvote"yes".
Inafrequentistapproachtostatisticalinferenceonewouldnotattributeanyprobabilitydistributiontop(unlessthe
probabilitiescouldbesomehowinterpretedasrelativefrequenciesofoccurrenceofsomeeventorasproportionsof
somepopulation)andonewouldsaythatX
1
,...,X
n
areindependentrandomvariables.
Bycontrast,inaBayesianapproachtostatisticalinference,onewouldassignaprobabilitydistributiontop
regardlessofthenon-existenceofanysuch"frequency"interpretation,andonewouldconstruetheprobabilitiesas
dmodel,therandomvariables
X
1
, ..., X
n
arenotindependent,icular,ifalarge
numberoftheXsareobrvedtobeequalto1,thatwouldimplyahighconditionalprobability,giventhat
obrvation,thatpisnear1,andthusahighconditionalprobability,giventhatobrvation,thatthenextXtobe
obrvedwillbeequalto1.
Rulesofconditionalindependence
Atofrulesgoverningstatementsofconditionalindependencehavebeenderivedfromthebasicdefinition.
[3][4]
Note:sincetheimplicationsholdforanyprobabilityspace,theywillstillholdifconsidersasub-univerby
conditioningeverythingonanothervariable,mple,wouldalsomeanthat
.
Note:below,thecommacanbereadas,andthuscanbevisualizedasaVennDiagram.
Conditionalindependence
3
Symmetry
Decomposition
Proof:
• (meaningof)
• (ignorevariablebyintegratingitout)
•
repeatprooftoshowindependenceofXandB.
Weakunion
Contraction
Contraction-weak-union-decomposition
Puttingtheabovethreetogether,wehave:
Interction
IftheprobabilitiesofX,A,Bareallpositive,thenthefollowingalsoholds:
References
[1]Toethatthisistheca,oneneedstorealithatPr(R∩B|Y),inthepicture
ontheleft,therearetwosquareswhereRandBoverlapwithintheYarea,andtheYareahastwelvesquares,Pr(R∩B|Y)==.
Similarly,Pr(R|Y)==andPr(B|Y)==.
[2]/~murphyk/Bayes/
[3]Dawid,A.P.(1979)."ConditionalIndependenceinStatisticalTheory".JournaloftheRoyalStatisticalSocietySeriesB41(1):1–31.
2984718.
[4]JPearl,Causality:Models,Reasoning,andInference,2000,CambridgeUniversityPress
ArticleSourcesandContributors
4
ArticleSourcesandContributors
Conditionalindependence Source:/w/?oldid=418113252 Contributors:3mta3,Alansohn,AzaToth,Brighterorange,Btyner,Cesarth,CharlesMatthews,
Circeus,CitrusLover,DGJM,Ddxc,Dominus,Duoduoduo,Epachamo,Fresheneesz,GarethOwen,Giftlite,JeffG.,Mackem,Melcombe,MichaelHardy,Ms2ger,Mtcv,Nasz,Neilc,
Ninjagecko,Ogai,OlegAlexandrov,,Qwfp,Redrocket,Rkashuba,Splat2010,Tsirel,31anonymoudits
ImageSources,LicensandContributors
Image: Source:/w/?title=File:Conditional_ Licen:CreativeCommonsAttribution-Sharealike3.0,2.5,2.0,1.0
Contributors:diaLaterversion(s)dia.
Licen
CreativeCommonsAttribution-ShareAlike3.0Unported
/licens/by-sa/3.0/
本文发布于:2023-01-02 13:41:27,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/78058.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |