四色定理的尝试证明
关于四色定理的证明:
1、容易知道:如果能用四种颜色填充一个平面图(相邻区域颜色不
同),则一定能用五种颜色填充。
2、突破口:由此,要证明四色定理,只需证明平面图中的五个区域,
不能两两相邻。如果两两相邻,显然四种颜色是不够的,即此时至少
需要五种颜色。
3、欧拉公式:V-E+F=2
V:顶点个数E:弧个数F:区域个数
4、绘图(直观的绘图,五个区域不能两两相邻;然而要得出五个区
域不能两两相邻的结论,还需要证明。)
对图—1的说明:上图分为五个区域,分别对五个区域着色(相邻区
域着不同的颜色);显然在图—1中,各区域间的关系如下表:
相邻区域ABCDE
AsYYYY
BYsYYY
CYYsYN
DYYYsY
EYYYs
概率法:
假设平面上有五个两两相邻的区域,面积相等;现在向该这五个区域
随机地投掷两颗豆子,则:
【1】事件A:每个区域落入豆子的概率为1/5
【2】事件B:两颗豆子落在同一区域的概率为1/5
【3】事件C:两颗豆子落在相邻区域的概率为4/5(这是个假命题)
【4】如何发现矛盾呢?————突破口:相邻区域落入豆子的概率
不是4/5
不妨设五个区域分别为A、B、C、D、E。由假设,每个区域必与其
他四个区域相邻,那么两颗豆子分别落在A和B上的概率为2/25
‘已知’二维平面中五个不同区域不能两两相邻,而在三维区域中这是
可以实现的;因此,四色定理的证明,可以以非整数维空间来探讨。
本文发布于:2023-01-02 12:50:25,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/77807.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |