SCI论⽂写作常⽤句⼦、句式、词汇(总结)100
pproach,…
rk特点,特征
ideaunderlyingourmethodistotrainthemodel’sinitialparameterssuchthat…
spectto
ous声名狼藉的,众所周知的
enttheresultinTable1.
ppliedtometa-learningforRL
ilthealgorithminAlogrithm3.
ymaylackcomputationaleffiency
entnetworkscansupportmeta-learninginafullysupervidcontext.
-levelalgorithminthedeepRLspace
atureofthislineofwork
ality合理性
gence收敛性
getraveltime(withrespectto关于)
zingtrafficflowandminimizingtheaveragewaitingtimearethegoalsofintelligenttrafficcontrol.
erimentresultsshowaninspiringimprovement
uatetheeffectivenessandefficiencyofourMetaLight…
sbadontheintuitiveprincipleof…
20.,andrewardisameasureoftransportationefficiency.
portantly,
-badandactor-criticbadRLmethods
onameoftheexperiment实验的备忘录
ricaltransformationlikeflippingandrotation.对称变换,对折和翻转
own减⼩scaleup增⼤
orthwerefertotheversionofthealgorithmweputforwardasPPO+Demonstrations(PPO+D).
at,…Inaddition,…Meanwhile,…
cVolume:交通量
theyreachreasonableperformance.
sthevaluesoftheunenactionstoreasonablevalues,
31.…hasattractedincreasinginterestsrecently.
lly,thecommunicationprotocolbetweenagentsismanuallyspecifiedandnotaltered
duringtraining.通常地,…
ation,n.复现(实验);(绘画等的)复制;拷贝
ms,同义词
,inordertoefficientlytakeadvantageofthecontextualinformation,wedesigna…
llelandinadvance.
rly,Zhangetal.[23]leveragebi-directionalLSTMtocapturethecontextualinformation.
ction,weformalizetheproblemofTTE,andthenintroducethefeaturesweudinthepropodframework.
edgraph有向图
podmethodtakesinsightsfromthegmentbadmethods,whichisabletoefficientlyreducethe
podmethodtakesinsightsfromthegmentbadmethods,whichisabletoefficientlyreducethe
respontimeofarequest.
’sfuturetrafficconditionisstronglycorrelatedwiththehistoricaltrafficconditionsofthelinkitlfaswellas
itsneighborlinks.
tethetrafficconditionsobrvedongraph…
nstratetheefficiencyofourmethod,weconductextensiveexperiments
with…,wedevelopanencoder-decoderframeworkfordynamicgraphs.
假设,认定,认为
tely,wepropoatwo-timescaledeeptemporalpointprocessmodelthatcapturestheinterleaveddynamicsof
theobrvedprocess.=Specifically
ctedgraph⽆向图,directedgraph有向图。
r,therecentoverwhelmingsuccessofconvolutionalneuralnetworks(CNNs)…
end(为此),wepropoanewneuralnetworkmoduledubbed…
edtoexistingmodulesoperatinginextrinsic…
and-designedfeaturesonpointcloudshavelongbeenpropodingraphicsandvision,
uctivelearning:unlabelleddataisthetestingdata(转导推理)
ivelearning:unlabelleddataisnotthetestingdata(归纳式学习)
thatreasoningproblemsfordynamicgraphscanbeforextrapolationorinterpolation
ervedprocessnamely:dynamicsofthenetwork(realizedastopologicalevolution)
csonthenetwork(realizedasactivitiesbetweennodes).
nglatentreprentationsofnodesingraphsisanimportantandubiquitoustaskwithwidespreadapplications
suchaslinkprediction,nodeclassification,andgraphvisualization.
way,wecantakeinsightsfromthegment-badapproaches,
59.…showsthatitisapracticalandrobustsolutionforlarge-scalereal-worldrvices.
rtempiricalresultsandanalysisinthissubction.
ively,thepressureofaninterctioncouldbeenas
62.,whichisdesignedtofullyexploitthejointrelationsofspatialandtemporalinformation.
paperweexploreasimpleneuralmodel,calledCommNet,thatus…
ofoneLSTMperpersondoesnotcapturehuman-humaninteractions.
t,whichusgraphattentionalnetworkstofacilitatecommunication.
neousandHeterogeneousScenariosinDifferentCities.
estofourknowledge,wearethefirsttougraphattentionalnetworkinthettingoftrafficsignalcontrol
paper,wepropotouthegraphattentionalnetwork[26]tolearnthedynamicsoftheinfluences,
69.…weextendtheprevioussingle-headattentionintheneuralnetworktomulti-headattentionasmuchrecentworkdid
[25,26].
teriordataliketheroadandweatherconditionmighthelptoboostmodelperformance.
icideaistolearnalow-dimensionalvectorforeachnode…
eusuallyreprentedasaquenceofgraphsnapshotsfromdifferenttimesteps(Leskovecetal.,2007).
riinabroadspectrumofproblemsrangingfrombiologyandparticlephysicstosocialnetworksand
recommendationsystems.
esstate-of-the-artperformanceonveraltransductiveandinductivepredictiontasksfordynamicgraphs.
etheplethoraofdifferentmodelsfordeeplearningongraphs,fewapproacheshavebeenpropodthusfarfor
dealingwithgraphsthatprentsomesortofdynamicnature(ngfeaturesorconnectivityovertime).
76.,thispaperunprecedentedlytreattheproblemoftrafficsimulationasalearningproblem,
(point)istoaccuratelyimitatetheobrvedvehiclebehaviorsand
comethedeficiencyin…,anaturalconsiderationistolearn…fromreal-worldobrvations,insteadof
exclusivelyrelyingonunrealisticphysicalmodels.
paper,wefollowthegenerativeadversarialimitationlearning(GAIL)[8]thatincorporates…,andextendittothe
multi-agentcontextinthetrafficsimulationproblem.
urework,wewillworkonimprovingthemodel’sgeneralizationabilityindifferenttrafficenvironment.
eriorresultsofBCismainlyduetoitsfailureinmodelinginteractionsbetweenvehicles,whichismoreobvious
inmulti-interctioncas.
paper,wepropoanovelGCNmodel,whichwetermasShortestPathGraphAttentionNetwork(SPAGAN).
83.…allowsforamoreinformativeandintactexplorationofthegraphstructureand…
ralltrainingworkflowofSPAGAN.
suallydividedintotwocategories,alapproacheslearnthenodeembedding
lapproachesdefineconvolutions
directlyonthegraph,like.
,weexplicitlymodel(显⽰建模)thetemporalcorrelationsofinteractionsbyadoptinganextraLSTM.
87.(GCN)andgatedgraphconvolutionneuralnetwork(GGNN)[18]havedemonstratedground-breakingperformanceon
manytaskslike…
eparallelprocessing,MPP.⼤规模并⾏处理
ultssuggestthatTCNsconvincinglyoutperformbalinerecurrentarchitectures…
etranslation,audiosynthesis,languagemodeling
uldcauthedegradationofpredictiveperformanceofthemodel.
rthnotingthat3DGATcanbeemployedtootherspatialtemporalapplicationsaswell.
93.3DGATilaboratelydesignedtofullyexploitthejointrelationsofspatialandtemporalinformation.
areConSTGATwithveralstrongbalinemethodsusingreal-worlddatats.
themcomparable,weuthesamettingof…
96.…suchascomputervision,naturallanguageprocessing,recommendersystems,andotherdomainsbyemployingthe
graphstructures.
ilthe3D-attentionmechanism…,whichisanextensionofgraphattentionnetwork[15],andisillustratedin
Figure3.
herimprovetheperformance,wecombine…and…
yzetheeffectofthecontextualinformationofaroute.
oanovelspatial-temporalgraphattentionnetwork,whichdealswiththegeographicinformationand
temporalinformationofthetrafficconditionssimultaneously.
本文发布于:2022-12-31 18:22:59,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/67065.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |