1
第六章磁性矿物
(LisaTauxe著,刘青松译)
推荐读物
Evans&Heller(2003)和Dunlop&Özdemir(1997)两部专著的第三章
6.1前言
古地磁学研究的核心内容就是确定由何种磁性矿物携带剩磁以及揭示岩石是如何被磁
化的。为了理解这些问题,我们需要了解自然界重要磁性矿物的种类、鉴定特征、形成过程
以及它们的磁性特征。本章中,我们要讨论一些与地质过程密切相关的重要磁性矿物。表
6.1列举了一些主要磁性矿物的磁学性质。
铁是太阳系中含量最高的过渡元素。因此,大部分古地磁研究涉及与铁有关的各种磁性
矿物,例如:铁镍合金(它对地球以外的行星磁场研究特别重要),铁氧化物(诸如磁铁矿、
磁赤铁矿和赤铁矿),铁的氢氧化物(iron-oxyhydroxide,如针铁矿),以及铁硫化物(如胶
黄铁矿和黄铁矿)。因为地球上铁镍合金非常稀少,所以我们只重点讨论后面的几种。
6.2铁氧化物
图6.1:铁氧化物的三元成分图(修改自O’Reilly,1984)。带箭头的虚线表示氧化程度(z)增
加的方向。实线代表固溶体系列。
古地磁学研究中有两种重要的固溶体系列,即钛铁尖晶石磁铁矿
(ulvöspinelmagnetite)系列和钛铁矿赤铁矿(ilmenitehematite)系列(见图6.1)。在这
2
个三元图中,Fe2+在最左端,Fe3+在最右边,Ti4+在最顶端。相关的氧化物为FeO(方铁矿
wustite),Fe
2
O
3
(赤铁矿或磁赤铁矿)和TiO
2
(金红石rutile)。在三元图中的每一点都代表
三种阳离子的组合。每一个实箭头(标记为钛磁铁矿titanomagnetite和赤钛铁矿
hemoilmenite)代表在磁铁矿和赤铁矿的晶体中钛的含量逐渐增加。在钛磁铁矿中钛的含量
用x表示,而在赤钛铁矿中则用y代表。x和y的值在0(对应于磁铁矿或赤铁矿)和1(对
应于钛铁尖晶石或钛铁矿)之间。
钛磁铁矿(Fe
3-x
Ti
x
O
4
)
在前面有关岩石磁学的章节中,我们讨论了磁铁矿。在第四章中提到,磁铁矿(Fe
3
O
4
)
具有反尖晶石结构(AB
2
O
4
)。氧原子构成一个面心立方晶格,阳离子充填于八面体或者四面
体结构中。每一个单位晶胞具有四个四面体位置(A)和八个八面体位置(B)。四个氧离子(O2-),
两个Fe3+离子和一个Fe2+离子达到电荷平衡。Fe3+有5个未配对电子,Fe2+则有四个。每一
个未配对电子都携带一玻尔磁子(Bohrmagneton,m
b
)。二价铁离子都充填在在八面体位置,
而三价铁离子则均匀分布在八面体位置和和四面体位置,因此磁铁矿的结构式可以表达为
Fe3+Fe3+Fe2+O
4
。A区和B区的电子自旋反向平行排列,磁铁矿表现为亚铁磁性。因此,0
K时每个磁铁矿分子的净磁化强度是(95=4)m
b
。
钛磁铁矿(titanomagnetite)可以作为主要矿物产于火成岩中。赤铁矿以及赤钛铁矿
(hemoilmenite)系列中的矿物也可通过高温氧化过程形成。沉积物的磁铁矿通常是碎屑成
因,但也可以通过细菌活动或自生成岩作用中形成。
Ti4+离子没有未配对的电子,因此Ti4+离子替代其他阳离子对钛磁铁矿的磁学性质有深
刻的影响。Ti4+替代一个三价铁离子,为了保持电荷平衡,另外一个三价铁离子变成二价铁
离子。这一固溶体系列的终端产物是:
磁铁矿magnetite钛铁尖晶石ulvöspinel
Fe3+Fe3+Fe2+O
4
Fe2+Fe2+Ti4+O
4
x=0x=1
钛铁尖晶石具有反磁性,因为其A区和B区具有相同的净磁矩。当x在0和1之间
时,我们称之为钛磁铁矿。如果x=0.6,相应的矿物叫做TM60。
钛含量(x)对钛磁铁矿性质的影响如图6.2。因为Ti4+没有未配对电子,钛磁铁矿的
饱和磁化强度随着x的增加而减小(图6.2a),但是晶胞(celldimensions)随x的增加而增大(图
6.2b),同时导致居里温度降低(图6.2c)。其矫顽力也会稍微增加(未显示)。
磁铁矿具有较大的饱和磁化强度(M
s
),因此它受形状各向异性的控制。尽管如此,磁晶
各向异性(magnetocrystallineanisotropy)也能够用来检测磁铁矿的存在。磁晶各向异性能是温
度的函数。当从0K增温到大约120K,磁晶各向异性常数受温度的强烈影响。从绝对零度
升温到约100C,磁晶各向异性常数的变化可以导致磁化强度的急剧降低,叫做Verwey转
换(Verweytransition)(见第四章)。Verwey转换的存在意味着剩磁由磁晶各向异性控制。此外,
氧化程度对Verwey转换温度的影响较大,磁赤铁矿化甚至能够完全压制这一转换(见Dunlop
&Özdemir,1997)。
3
值得注意的是,自然界中的钛磁铁矿经常含有杂质(通常是Al,Ma,Cr等)。这些杂质也
会对钛磁铁矿的磁学性质产生影响。如果有10%的Al3+替代进入钛磁铁矿的晶格中,它的
M
s
就会降低25%,同时居里温度降低约50C。如果TM60的晶格中有Mg2+替代,它的M
s
会降低约15%。
图6.2:钛磁铁矿的性质随着含钛量的变化.x代表钛含量。a)磁化强度的变化,用每个单位
晶胞的玻尔磁子表示。b)晶格大小的变化。c)居里温度的变化。(数据来源于O’Reilly,1984)。
6.2.1赤铁矿-钛铁矿系列(Fe
2-y
Ti
y
O
3
)
赤铁矿具有刚玉结构(见图6.3)。它为菱面体(rhombohedral)结构,并有假劈理
(pudocleavage)(垂直于晶体c轴)。赤铁矿为反铁磁性(antiferromagnetism),并具有由于自
旋斜交(spin-canting)或者缺陷铁磁性(defectferromagnetism)造成的微弱的寄生铁磁性
(parasiticferromagnetism)。因为赤铁矿的磁化强度实质是斜交反铁磁性(spincanted
antiferromagnetism),因此其磁化强度消失的温度点被称为“尼尔温度”(Néeltemperature),
而不是居里温度(Curietemperature)。居里温度这一术语仅仅是对于狭义上的铁磁性矿物而
言。赤铁矿的尼尔温度大约是685C。
当温度大于约10C(Morin转换),受控于晶体结构,磁化强度垂直于晶体c轴,或者
在基面(basalplane)内。在Morin转换温度以下,自旋斜交(spin-canting)消失,并且磁化强度
平行于c轴。这一效应可以用来对自旋斜交(spin-canting)控制的颗粒进行退磁,但是这一过
程对那些缺陷磁矩(defectmoments)控制的颗粒不起作用。大部分在低温下形成的赤铁矿的磁
化强度为缺陷磁矩(defectmoments)控制,因此,许多岩石的剩磁并没有Morin转换。
4
赤铁矿在被氧化的沉积物中广泛存在,尤其是红层的主要磁性载体。它也作为一种高
温氧化产物存在于某些火成岩中。根据它的颗粒大小,以及其它因素,它的颜色可以是黑色
(镜铁矿specularite)或者红色(作为染色剂)。赤铁矿的主要磁学性质见表6.1。
在矿物晶格中钛的替代作用对赤铁矿磁学性质的影响比磁铁矿的要大得多。当y=0时,
赤铁矿为斜交反铁磁性。但是当y=0.45时,变为亚铁磁性(见图6.4a)。这是因为,对于少量
的替代,Ti和Fe均匀分布在晶格中。当y>0.45,Ti优先占据一个阳离子层。因为Ti4+没有
净磁矩,可以想象两个子晶格(sub-lattice)中的磁矩不再相等,从而造成亚铁磁性。
6.2.2固溶体系列(solidsolutionries)
在600C以上,在磁铁矿和钛铁尖晶石以及赤铁矿和钛铁矿之间为完全的固溶体。随
着温度降低,钛铁矿和钛赤铁矿出溶(exolve)形成富钛和贫钛的片晶(见图6.5)。如果温度
下降得太快,出溶过程就会被抑制,从而形成大量亚稳定的晶体,其x、y值为中等(intermediate)
值。对于洋壳磁铁矿,其常见的一个成分就是TM60(图6.1中绿色圆点)。
对于钛赤铁矿,当其具有中等的y值时,其具有比较特殊的古地磁学性质。在高温时,
存在一种固溶体,但是当温度降低时,晶体会出溶为富含和贫钛成分的片晶(图6.6)。图
6.4表示钛赤铁矿的饱和磁化强度和尼尔温度随着钛含量增加的变化特征。对于一定的初始
液态组分(initialliquidcompositions),那些出溶片晶具有富钛和贫钛条带相间排列的特征。
如果富钛条带具有较高的磁化强度但是较低的居里温度,那么贫钛的条带会首先被磁化。随
着温度降低,当达到富钛条带的居里温度时,富钛条带就会受到贫钛条带的退磁场影响而被
磁化,从而获得一个与外场反向的剩磁。由于富钛条带具有较高的磁化强度,因此,其净
NRM也将与外场平行但方向相反,即岩石将会自反向(lf-reverd)。幸运的是,这一现
象在自然界中并不常见。
5
图6.3:赤铁矿。a)镜铁矿的照片。b)赤铁矿的晶体结构。c)与b)相同但是旋转了90度。
图6.4:钛赤铁矿系列的性质随着钛成分的变化特征。a)饱和磁化强度。b)尼尔温度。(修改
自Butler,1992)。
6
图6.5:FeTi氧化物的相图。x和y表示成分。实线之上为完全固溶体。只有当温度低于实
线时,出溶才会发生。a)钛磁铁矿系列。b)钛赤铁矿系列。(修改自Dunlop&Özdemir,1997)。
图6.6:钛赤铁矿出溶片晶的显微照片。深色条带为富钛部分(具有较高的磁化强度和较低
的居里温度),浅色条带为贫钛部分(具有较低的磁化强度和较高的居里温度)。(修改自
Maher&Thompson,1999)。
6.2.3(钛)磁铁矿氧化为(钛)磁赤铁矿
很多矿物在形成时与当时的环境达到平衡(例如冷却的熔岩流内部),随后又经历不同
的环境(例如洋底环境变化以及地表风化作用)。这些矿物为了与新环境达到新的平衡状态
而不得不发生变化。相对于原来的环境,新环境常常更具氧化性,因此矿物成分倾向于沿着
图6.1虚线所代表的过程发生变化。氧化程度用z来表示。
从理论上讲,虽然磁铁矿和钛铁尖晶石之间存在固溶体,但是自然界中这两种矿物共
生的现象并不常见。这是因为,在熔体中钛磁铁矿与氧气作用形成含钛铁矿的低钛磁铁矿。
这种形式的氧化叫做岩浆后期氧化(deutericoxidation)。
低温氧化过程中,Fe2+从(钛)磁铁矿的晶体结构中释放出来,并在晶体表面氧化为Fe3+,
7
从而导致一种单相的尖晶石(钛磁铁矿)转化为另一种新的单相的尖晶石(钛磁赤铁矿)。
钛磁赤铁矿是一种缺乏阳离子(cation-deficient)的反尖晶石。图6.7显示了一个正在被氧化
成磁赤铁矿的磁铁矿晶体。Fe2+氧化为Fe3+使得晶体体积减小,这会在磁铁矿晶体表面形成
特征的裂痕,同时磁化强度也降低。但是由于晶胞收缩,单位晶胞更紧密,使得居里温度升
高。对于TM60,这些变化趋势如图6.8所示。磁赤铁矿化还能使得Verwey转换温度显著降
低(图6.9)。
(钛)磁赤铁矿的结构处于亚稳定状态,因而会转化为更加稳定的、等化学的(钛)赤铁矿,
或者还原为磁铁矿。Fe
2
O
3
的两种状态从符号上可以加以区分,前缀和分别代表磁赤铁矿
和赤铁矿。自然界中形成的磁赤铁矿通常在大约350C完全转化为赤铁矿,但是它也能在更
高的温度存在(更详细的资料见Dunlop&Özdemir,1997)。另外一种更普遍的形式是再磁铁
矿外部氧化为形成磁赤铁矿外壳,而内核仍旧是磁铁矿。
图6.7:一个正在经历磁赤铁矿化的磁铁矿晶体(约30微米)。因为体积的变化,部分晶体出
现裂痕。(图片来自Gapeyev和Tl’movich,1988)。
8
图6.8:TM60的一些特征参数随氧化程度(z)的变化曲线。a)磁化强度(M
s
)b)晶格参
数。c)居里温度。(数据来自Dunlop&Özdemir[1997])
6.3铁的氢氧化物和铁硫化物
自然界存在许多种丰度不同的铁的氢氧化物,其中,针铁矿(FeOOH)是最为常见的
一种。针铁矿具有反铁磁性,其磁矩为缺陷磁矩(defectmagnetization)。针铁矿通常以含
铁矿物的风化产物或者含铁溶液直接沉淀的形式广泛存在。许多条件下,针铁矿是亚稳定的,
它随时间推移或者温度升高而脱水形成赤铁矿。通常,温度达到约325C时,脱水反应进行
得比较完全。针铁矿具有非常高的矫顽力和较低的尼尔温度(100-150C),其特征参数见
表6.1。
古地磁学研究中有两种重要的硫化物:胶黄铁矿(Fe
3
S
4
)和磁黄铁矿(Fe
7
S
8
-Fe
11
S
12
)。
这两种矿物都呈亚铁磁性,并产出于还原环境中。他们都较为容易被氧化呈各种铁的氧化物,
同时生成黄铁矿。
单斜磁黄铁矿(Fe
7
S
8
)的居里温度约为325C(图6.11,表6.1),在~35K时发生磁性
转换,因此,可以利用低温磁性测量检测单斜磁黄铁矿(Fe
7
S
8
)的存在(图6.10)。六方磁
黄铁矿在~200C时会经历从不完全反铁磁性到铁磁性的结构转换,并且饱和磁化强度大大
升高。热磁分析过程中,由于晶体膨胀(theexpansionofthecrystal)导致稍低于居里温度处
磁化强度急剧升高出现尖锐的峰值(图6.1b)。胶黄铁矿的最大阻挡温度约为330C。胶黄
9
铁矿和磁黄铁矿的其他磁性特征参数见表6.1。
图6.9:磁赤铁矿化对Verwey转换的影响。a)粒度为37的磁铁矿在10K获得的饱和剩磁的升
温曲线。b)部分氧化的磁铁矿在10K获得的饱和剩磁的升温曲线。(数据来自Ozdemiretal.,
1993)。
图6.10:单斜磁黄铁矿的低温磁性转换。(据Snowball&Torrii,1999)。
图6.11:单斜磁黄铁矿(a)、六方磁黄铁矿(b)以及两者的混合物(c)的热磁曲线。(据
Dekkers,1988)。
10
6.4火成岩中铁钛氧化物的产生和改造
从硅酸盐熔体中结晶的铁钛氧化物的成分和相对比例与许多因素有关,如硅酸盐熔体的
化学成分、氧逸度、冷却速率,等等。并且,冷却后的最终产物可能被改造。通常,镁铁质
火山岩(如,玄武岩)的铁钛含量要比硅质熔岩(如,流纹岩)高得多。在硅质熔体中,铁
钛氧化物存在于第一个液相中(~1000C),而在镁铁质熔岩中,铁钛氧化物通常形成于最
后的相中(~1050C),而且往往于斜长石和辉石伴生。
钛磁铁矿中钛的含量变化很大。通常,从硅质熔体中结晶的钛磁铁矿的钛含量要比从其
他熔体中结晶形成的钛磁铁矿中钛的含量要高(图6.12的黑色实线)。拉斑玄武岩熔岩中的
钛磁铁矿的x值一般在0.5-0.8之间(0.5
多洋壳的特征。从硅酸盐熔体中结晶的菱面体相(红色断线)的y值范围较小,对多数熔岩
来说,y值介于0.05-0.3之间(0.05
通常,岩石中最终的磁性矿物组合受到冷却速率和结晶初始阶段氧逸度的强烈影响。作
为一级近似,我们将缓慢冷却的岩石(这种岩石可能经历了固熔体出溶和/或后期氧化作用)
与矿物被快速淬火的岩石区分开。前面已经提及,如果氧逸度不足,缓慢冷却的火成岩中的
铁钛氧化物常常有出溶片晶,并且呈现低钛和高钛磁铁矿和带状结构。这种反应石非常缓慢
的,因此在自然界中很少见。
缓慢冷却的岩石的典型情况是,在冷却结晶过程中,随着岩浆分异程度的增加,系统氧
化程度增加。例如,岩浆水的析出(thedissociationofmagmaticwater)和富铁硅酸盐的结晶
都会增加氧化程度,其结果将产生高z值成分(图6.1)。由于增加的O
2
驱动反应
向右进行,最后的矿物组合通常由铁钛矿片晶和几乎纯的磁铁矿
组成。这一过程称之为氧出溶作用(oxyexsolution)。在更加氧化的条件下,这些矿物相最
终将被更加氧化的成分(例如,赤铁矿,铁板钛矿pudobrookite)取代。
地表条件下的风化作用或者中温热液的改造可导致缺阳离子磁赤铁矿(钛磁赤铁矿)的
产生。这一过程是这样发生的,通过氧加入到尖晶石结构中,同时Fe2+被氧化成Fe3+以保持
电荷平衡;或者通过从去除晶体结构中一些八面体位置的铁来实现。
6.5土壤和沉积物中的磁性矿物
火成岩是沉积岩中各种成分的最终物源,但是,生物作用或者低温成岩作用将改造火成
岩的成分,并且对沉积物中的磁性矿物有重要影响,结果导致沉积物中的磁性矿物五彩缤纷、
复杂多样。来自火成岩,被输入到沉积环境中的钛磁铁矿可能经历酸碱度和氧化还原条件的
改变从而是其不稳定,进而被改造。并且,相对与磁铁矿稳定存在的条件来说,虽然海水地
球化学条件通常是氧化的,但是,随着埋深增加,有机质逐渐分解,沉积物的氧化还原条件
会发生显著变化。这种氧化还原条件的变化可能在局部产生强还原环境,从而导致磁铁矿被
溶解和自生硫化物生成。实际上,沉积物中亚铁磁性矿物含量和空隙水地球化学性质随深度
的变化通常意味着,在海相沉积层序中,这一过程(指局部强还原环境)是很常见的。例如,
11
沉积物磁性(例如,磁化率,IRM,ARM,等等)的减弱往往起因于沉积物中磁铁矿的溶
解和/或非磁性硫化物的生成。
沉积物还有更有趣的磁性矿物,那就是趋磁细菌产生的细菌成因磁铁矿(图6.13)。如
果将生物成因磁铁矿的大小和形状投到第三章的Evans图上,将显示,趋磁细形成的磁铁矿
的粒度位于单畴范围,这在自然界是非常稀少的。在沉积物中,细菌成因磁铁矿似乎是很常
见的,但是,对于它对天然剩磁的贡献,目前我们仍知之甚少。
图6.12:火成岩中的铁钛氧化物。(数据来自Frost&Lindsley,1991)。
图6.13:趋磁细菌产生的细菌成因磁铁矿的显微照片。a)活的细菌体内完整的磁小体
(Fassbinderetal.,1990)。b)巴哈马ODPsite1006D中获得的磁小体链(HounslowinMaher
&Thompson,1999)。
12
表6.1:磁性矿物的物理性质
磁铁矿Fe
3
O
4
密度=5197kgm-3
居里温度=580C
饱和磁化强度=92Am2kg-1
各向异性常数=-2.6Jkg-1
体积磁化率=~1SI
典型的矫顽力值10’sofmT
Verwey转换温度:110-120K
晶胞参数celledge=0.8396nm
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
O’Reilly[1984]
DunlopandOzdemir[1997]
O’Reilly[1984]
O’Reilly[1984]
OzdemirandDunlop[1993]
DunlopandOzdemir[1997]
磁赤铁矿
Fe
2
O
3
密度=5074kgm-3
居里温度=590-675C
饱和磁化强度=74Am2kg-1
各向异性常数=0.92Jkg-1
Verwey转换:被抑制
250750C分解为Fe
2
O
3
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
TM60Fe
2.4
Ti
0.6
O
4
密度=4939kgm-3
居里温度=150C
饱和磁化强度=24Am2kg-1
各向异性常数=0.41Jkg-1
矫顽力~8mT
Verwey转换:被抑制
晶胞参数celledge=0.8482nm
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
DunlopandOzdemir[1997]
赤铁矿
Fe
2
O
3
密度=5271kgm-3
奈尔温度=675C
饱和磁化强度=0.4Am2kg-1
各向异性常数=228Jkg-1
体积磁化率=~1.3x10-3SI
矫顽力值变化大,从几十mT到几个T
Morin转换温度:~250-260K(对于>0.2m的
颗粒)
DunlopandOzdemir[1997]
O’Reilly[1984]
O’Reilly[1984]
DunlopandOzdemir[1997]
O’Reilly[1984]
Banerjee[1971]
O’Reilly[1984]
针铁矿
FeOOH
密度=4264kgm-3
尼尔温度=70-125C
饱和磁化强度=10-31Am2kg-1
各向异性常数=0.252Jkg-1
体积磁化率=~1x10-3SI
矫顽力值可达几十个T
250400C分解为赤铁矿
DunlopandOzdemir[1997]
O’Reilly[1984]
O’Reilly[1984]
Dekkers[1989]
Dekkers[1989]
13
磁黄铁矿Fe
7
O
8
密度=4662kgm-3
单斜晶系:
居里温度=~325C
六方晶系:
居里温度=~270C
饱和磁化强度=0.4-~20Am2kg-1
体积磁化率=~1x10-31SI
各向异性常数=20Jkg-1
矫顽力值变化大,可达几百mT
低温磁性转换温度:34K
六方磁黄铁矿:转换温度约为200C
~500C分解为磁铁矿
DunlopandOzdemir[1997]
Dekkers[1989a]
Dekkers[1988]
Wormetal.[1993]
Collinson[1983];O’Reilly[1984]
O’Reilly[1984]
O’Reilly[1984]
Dekkers[1989]
Rochetteetal.[1990]
DunlopandOzdemir[1997]
胶黄铁矿Fe
3
O
4
密度=4079kgm-3
最大阻挡温度=~330C
饱和磁化强度=~25Am2kg-1
各向异性常数=-0.25Jkg-1
矫顽力:60>100mT
高M
r
/比值:~70x103Am-1
~270-350C分解为磁铁矿
DunlopandOzdemir[1997]
Roberts[1995]
Spenderetal.[1972]
DunlopandOzdemir[1997]
Roberts[1995]
SnowballandThompson[1990]
Roberts[1995]
参考文献
Banerjee,S.K.(1971),‘Newgrainsizelimitsforpaleomagneticstabilityinhematite’,Nature
.232,15–16.
Butler,R.F.(1992),Paleomagnetism:MagneticDomainstoGeologicTerranes,Blackwell
ScientificPublications.
Collinson,D.W.(1983),‘MethodsinRockMagnetismandPaleomagnetism’.
Dekkers,M.J.(1988),‘MagneticpropertiesofnaturalpyrrhotitePartI:behaviourofinitial
susceptibilityandsaturationmagnetizationrelatedrockmagneticparametersinagrain-size
dependentframework’,.52,376–393.
Dekkers,M.J.(1989a),‘izedependenceof
somelowandhighfieldrelatedrockmagneticparametersmeasuredatroomtemperature’,
.97,323–340.
Dekkers,M.J.(1989b),‘dlowtemperature
behaviorsofJrsandTRMasafunctionofgrainsize’,.57,266–
283.
Dekkers,M.J.,Mattei,J.L.,Fillion,G.&Rochette,P.(1989),‘Grain-sizedependenceofthe
magneticbehaviorofpyrrhotiteduringitslowtemperaturetransitionat34K’,Geophys.
.16,855–858.
Dunlop,D.&Ozdemir,O.(1997),RockMagnetism:FundamentalsandFrontiers,Cambridge
UniversityPress.
14
Evans,M.&Heller,F.(2003),EnvironmentalMagnetism:PrinciplesandApplicationsof
Enviromagnetics,AcademicPress.
Fassbinder,J.,Stanjek,H.&Vali,H.(1990),‘Occurrenceofmagneticbacteriainsoil’,Nature
343,161–163.
Frost,B.&Lindsley,D.(1991),TheoccurrenceofFe-Tioxidesinigneousrocks,ey,
ed.,‘OxideMinerals:PetrologicandMagneticSignificance’,Vol.25ofReviewsin
Mineralogy,MineralogicalSocietyofAmerica,pp.433–486.
Gapeyev,A.&Tl’movich,V.(1988),‘Stagesofoxidationoftitanomagnetitegrainsinigneous
rocks(inRussian)’,1331-B89,3–8.
Maher,B.A.&Thompson,R.,eds(1999),QuaternaryClimates,EnvironmentsandMagnetism,
CambridgeUniversityPress.
O’Reilly,W.(1984),RockandMineralMagnetism,Blackie.
Ozdemir,O.,Dunlop,D.J.&Moskowitz,B.M.(1993),‘TheeffectofoxidationoftheVerwey
transitioninmagnetite’,.20,1671–1674.
Roberts,A.P.(1995),‘Magneticpropertiesofdimentarygreigite(Fe3S4)’,.
Lett.134,227–236.
Rochette,P.,Fillion,G.,ei,J.L.M.&Dekkers,M.J.(1990),‘Magnetictransitionat30-34
Kelvininpyrrhotite:insightintoawidespreadoccurrenceofthismineralinrocks’,Earth
.98,319–328.
Snowball,I.&Thompson,R.(1990),‘AstablechemicalremanenceinHolocenediments’,
.95,4471–4479.
Snowball,I.&Torii,M.(1999),Incidenceoandsignificanceofmagneticironsulphidesin
Quaternarydimentsandsoil,&on,eds,‘QuaternaryClimates,
EnvironmentsandMagnetism’,CambridgeUniversityPress,pp.199–230.
Spender,M.R.,Coey,J.M.D.&Morrish,A.H.(1972),‘Themagneticpropertiesand
MossbauerspectraofsyntheticsamplesofFe3S4’,.50,2313–2326.
Worm,H.U.,Clark,D.&Dekkers,M.J.(1993),‘Magneticsusceptibilityofpyrrhotite:grain
size,fieldandfrequencydependence’,.114,127–137.
本文发布于:2022-12-31 11:36:20,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/65214.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |