Uniformdistribution(discrete)
FromWikipedia,thefreeencyclopedia
Inprobabilitytheoryandstatistics,thediscreteuniform
distributionisasymmetricprobabilitydistributionwherebyafinite
numberofvaluesareequallylikelytobeobrved;everyone
ofnvalueshaqualprobability1/rwayofsaying"discrete
uniformdistribution"wouldbe"aknown,finitenumberofoutcomes
equallylikelytohappen".
Asimpleexampleofthediscreteuniformdistributionisthrowinga
siblevaluesare1,2,3,4,5,6,andeachtime
thediceisthrowntheprobabilityofagivenscoreis1/ice
arethrownandtheirvaluesadded,theresultingdistributionisno
longeruniformsincenotallsumshaveequalprobability.
Thediscreteuniformdistributionitlfisinherentlynon-parametric.
Itisconvenient,however,toreprentitsvaluesgenerallybyan
integerinterval[a,b],sothata,bbecomethemainparametersofthe
distribution(oftenonesimplyconsiderstheinterval[1,n]withthe
singleparametern).Withtheconventions,thecumulative
distributionfunction(CDF)ofthediscreteuniformdistributioncanbe
expresd,foranyk∈[a,b],as
Estimationofmaximum
Thixampleisdescribedbysayingthatasampleofkobrvationsis
obtainedfromauniformdistributionontheintegers,
problemiscommonlyknownastheGermantankproblem,following
theapplicationofmaximumestimationtoestimatesofGermantank
productionduringWorldWarII.
TheUMVUestimatorforthemaximumisgivenby
wheremisthesamplemaximumandkisthesamplesize,sampling
nbeenasaverysimpleca
ofmaximumspacingestimation.
Theformulamaybeunderstoodintuitivelyas:
"Thesamplemaximumplustheaveragegapbetweenobrvationsinthe
sample",
thegapbeingaddedtocompensateforthenegativebiasofthesample
maximumasanestimatorforthepopulationmaximum.
Thishasavarianceof
soastandarddeviationofapproximately,the(population)
averagesizeofagapbetweensamples;compareabove.
Thesamplemaximumisthemaximumlikelihoodestimatorforthe
populationmaximum,but,asdiscusdabove,itisbiad.
Ifsamplesarenotnumberedbutarerecognizableormarkable,one
caninsteadestimatepopulationsizevia
thecapture-recapturemethod.
discreteuniform
Probabilitymassfunction
n=5wheren=b
−
a+1
Cumulativedistributionfunction
Parameters
Support
pmf
CDF
Mean
Median
ModeN/A
Variance
Skewness
Ex.
kurtosis
Entropy
MGF
CF
本文发布于:2022-12-31 09:19:34,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/64557.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |