MonopolyandOligopoly
-degreepricediscrimination
Sincethemarketisparatedintotwogroups,submarket,thenwefacetwodemand
functions,)(
11
ypand)(
22
,profitmaximizationproblemcanbedescribedas
)()()(:
21222111
,
21
yycyypyypMax
yy
Hence,FOCis
)()(
2111
yyMCyMR,and)()(
2122
yyMCyMR
Othersituation:combinationofthetwoparatedmarkets
)()()(:
212121
21
yycyyyypMax
yy
Horizontalsummation:)()()(11
2
1
121
ppppppyyy
Optimalsolution:)()(yMCyMR
olybehavior
tmodel——Simultaneouslyquantitytting
Conditions:marketdemand)(
21
yybap,productsareidentical,marginalcostof
thetwofirmsareequalandconstant,cMCMC
21
,theydecidetheiroutput
decisionsimultaneouslywithoutknowingother’sdecisionadvanced.
Maximizationproblem:
)(:
111
ycypMaxs.t.)(
21
yybap
)(:
222
ycypMaxs.t.)(
12
yybap
Solution:
(1)Since
11211
)]([ycyyyba,then,itsFOCisshownas
02
12
1
1
cbyyba
y
,afterrearranging,thisyieldsthereactionfunctionoffirm1,
b
ybca
y
2
2
1
(2)Thesame,wehavethereactionfunctionoffirm2
b
ybca
y
2
1
2
(3)Combinethetworeactionfunctions,wehave
b
ca
y
b
ca
y
3
3
*
2
*
1
ndmodel——Simultaneouslypricetting
lbergmodel(quantityleadershipmodel)
Conditions:marketdemand)(
21
yybap,productsareidentical,marginalcostof
thetwofirmsareequalandconstant,cMCMC
21
,however,firm1isquantity
leader,whomakeshisoutputdecisionfirst,firm2isfollower,whomakeshisdecisionwith
knowingfirm1’sdecision.
Maximizationproblem:
)(:
111
ycypMax
s.t.)(
21
yybap&firm2’sreactionfunction)(
122
yfy
)(:
222
ycypMaxs.t.)(
12
yybap
Solution:backwardinduction
(1)Since
22122
)]([ycyyyba,thus,
02
21
2
2
cbyyba
y
,hence,firm2’sreactionfunctionis
b
ybca
y
2
1
2
(2)And
11211
)]([ycyyyba,substitutefirm2’sreactionfunction,then
Iso-profitcurvescanbeshownas)(
2
1
2
1111
bycyay
thus,optimalchoiceappearswhen
0)2(
2
1
1
1
1byca
dy
d
Sothat
b
ca
y
b
ca
y
4
2
*
2
*
1
eadershipmodel
Conditions:marketdemand)(
21
yybap,productsareidentical,marginalcostof
thetwofirmsare
221
2,yMCcMC,however,firm1ispriceleader,whomakes
hispricingdecisionfirst,firm2isfollower,whomakeshisdecisionwithknowingfirm1’s
decision.
TraditionalMethod:
Takinguofbackwardinduction:
Maximizationproblemsoffollower
)(:
2222
ycypMax
FOC:
22
2)(yyMCp
Thus,thereactionfunctionoffollowis
2
)(
22
p
pfy,inotherwords,it’ssupply
functionofthefollower.
Thenweconsiderthemaximizationproblemofpriceleader
)(:
1111
ycypMax
s.t.)()(
2121
yybayyDp
Substituting
2
)(
22
p
pfyintotheaboveconstraint,then,
p
bb
a
y)
2
11
(
1
,moregenerally,)(
11
pfy,whichisresidualdemandforfirm1.
Thenthemaximizationproblembecomes
))(()(:
1111
pfcpfpMax
p
Thus,FOCis
0)(1
1
11
1
dp
df
df
dc
dp
df
ppf
Hence,
22
*
c
b
a
p
,then
2
)
2
11
(
2
*
1
c
bb
a
y
,andthen
424
*
2
c
b
a
y
Comparison:eadershipmodel
Here,wetrytomakeacomparisonbetweenstackelbergmodelandpriceleadership
model,focusingontheesntialdifferencewithrespondtosolutionprocessandoutcome.
Conditionsofeconomicsituation;
marketdemand)(
21
yybap,productsareidentical,marginalcostofthetwo
firmsare
2211
,yMCyMC,however,firm1isdecisionleader,whomakeshis
decisionfirst,firm2isfollower,whomakeshisdecisionwithknowingfirm1’sdecision.
Ca(1):Stackelbergmodel
Solution:
er’sMaximizationproblemwithknowingfirm1’soutputquantitydecision
)(:
222
0
2
ycypMax
y
s.t.)(
12
yybap
Thus,FOCis02
221
2
2
ybyyba
y
Hence,therespondfunctionoffirm2is)(
122
yfy
b
yba
y
2
1
2
’sMaximizationproblemwithexpectingfirm2’sresponds
)(:
111
0
1
ycypMax
y
s.t.)(
21
yybap
&firm2’sreactionfunction)(
122
yfy
Substitutingallconstraintsintomaximizationproblem,thisyields
)()
2
(
11
1
11
ycy
b
bya
yba
Thus,FOCis0
2
2
2
2
11
2
1
1
1
yy
b
b
b
ab
bya
y
Hence,
)(22
2
2
*
1bb
abaab
y,
))(22)(2(
22
2
2
*
2
bbb
abbaabab
y
brium
))(22)(2(
32
2
222223
*
bbb
baababababab
p
Ca(2):PriceLeadershipmodel
Solution:
er’sMaximizationproblem,knowingfirm1’soutputquantityandpricedecision
)(:
222
0
2
ycypMax
y
s.t.)(
12
yybap
Atthistime,therearetworulesthatwedon’tknowwhetheritismatched.
FOC:
22
)(yyMCp,or
12
y
b
pa
y
Hence,therearetwoprobablereactionfunctions.
p
pfy)(
22
,or
1122
),(y
b
pa
ypfy
Ifbothoftheabovereactionfunctionsareequivalent,then
1
y
b
pap
,thatisfirm1’sresidualdemand:p
bb
ap
b
pa
y
11
1
’sMaximizationproblemwithexpectingfirm2’sresponds
)(:
111
ycypMax
p
s.t.p
bb
a
y
11
1
FOC:0
111111
21
b
p
bb
a
p
bb
a
p
Hence,
)2)((
22
*
aabbb
aabab
p
Thus,
)2(
2
*
1
aabb
aaa
y
,
)2)((
*
2
aabbb
aabab
y
Alsotherearetwoapproachestosolvingthisproblem,firstly,takingtheplaceofmaxp
andsubstitutingmaxy
1
,then,wehave
bb
a
y
2
*
1
,
)2)((
22
*
abbb
aabab
p
,
)2)((
*
2
abbb
aabab
y
Ca(3)Existingunmarketablegoodsinpriceleadership
Ontheotherhand,asgoodsinmarketareidenticalandover-suppliedisreality,
ore,unmarketablegoodsofmarketshareare
denoteunmarketableproportion,
21
21
21
1)(
yy
xx
yy
pf
,hence,quantity
offirm1’sunmarketablegoodsis
111
xyy,andthatoffirm2’sis
222
xyy.Now
wecandescribethemaximizationproblemsasfollow:
Forfirm2,)(
2222
y
2
yCxpMax
s.t.
21
1
2
2
)(
yy
pf
y
x
Thus,maximizationproblembecomesifconstraintissubstitutedintotheoriginalone.
)(
)(
222
21
1
2
yCy
yy
pf
pMax
Hence,theFOCoftheaboveproblemis
2
21
1
2)(
)(
yy
y
y
b
pap
Sothat,firm2’sreactionfunctioncanbedepictedas),(
122
ypy
Forfirm1,theleader,itsmaximizationproblemis
)(
1111
)y(p,
1
yCxpMax
s.t.
21
1
1
1
)(
yy
pf
y
x
andfollower’sreactionfunction),(
122
ypy
Thus,wehave)()(
11
21
1
1
1
)y(p,
1
yC
yy
y
pfpMax
s.t.2
21
1
2)(
)(
yy
y
y
b
pap
Solution:takinguofLagrangemethod,
2
21
1
2
11
21
1)(
)(
)(yy
y
y
b
pap
yC
yy
y
b
pa
pL
Hence,
0)(
)(
2
21
1
2
yy
y
y
b
papL
Then,thisyield2
21
1
2)(
)(
yy
y
y
b
pap
(1)
0
22
21
1
b
pa
yy
y
b
pa
p
L
Then,thisyield0
21
1
yy
y
(2)
0
)(
)(
2
1
3
2
21
2
21
2
1
y
y
yy
yy
y
b
pap
y
L
Substituting(1)&(2),then,
Wehave
21
yy(1*)
0
34
)(
)1()(
1
2
221
2
1
2
21
2
y
yyyy
yy
b
pap
y
L
Substituting(1)&(2),then,
Wehave
221
2
1
3yyyy(2*)
Combining(1*)&(2*),thus,
3
*
1
y,hence,
2
2
*
23
y
ca
本文发布于:2022-12-31 08:58:20,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/64463.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |