monopoly

更新时间:2022-12-31 08:58:20 阅读: 评论:0


2022年12月31日发(作者:贵州教育学院学报)

MonopolyandOligopoly

-degreepricediscrimination

Sincethemarketisparatedintotwogroups,submarket,thenwefacetwodemand

functions,)(

11

ypand)(

22

,profitmaximizationproblemcanbedescribedas

)()()(:

21222111

,

21

yycyypyypMax

yy



Hence,FOCis

)()(

2111

yyMCyMR,and)()(

2122

yyMCyMR

Othersituation:combinationofthetwoparatedmarkets

)()()(:

212121

21

yycyyyypMax

yy



Horizontalsummation:)()()(11

2

1

121

ppppppyyy

Optimalsolution:)()(yMCyMR

olybehavior

tmodel——Simultaneouslyquantitytting

Conditions:marketdemand)(

21

yybap,productsareidentical,marginalcostof

thetwofirmsareequalandconstant,cMCMC

21

,theydecidetheiroutput

decisionsimultaneouslywithoutknowingother’sdecisionadvanced.

Maximizationproblem:

)(:

111

ycypMaxs.t.)(

21

yybap

)(:

222

ycypMaxs.t.)(

12

yybap

Solution:

(1)Since

11211

)]([ycyyyba,then,itsFOCisshownas

02

12

1

1

cbyyba

y

,afterrearranging,thisyieldsthereactionfunctionoffirm1,

b

ybca

y

2

2

1



(2)Thesame,wehavethereactionfunctionoffirm2

b

ybca

y

2

1

2



(3)Combinethetworeactionfunctions,wehave

b

ca

y

b

ca

y

3

3

*

2

*

1

ndmodel——Simultaneouslypricetting

lbergmodel(quantityleadershipmodel)

Conditions:marketdemand)(

21

yybap,productsareidentical,marginalcostof

thetwofirmsareequalandconstant,cMCMC

21

,however,firm1isquantity

leader,whomakeshisoutputdecisionfirst,firm2isfollower,whomakeshisdecisionwith

knowingfirm1’sdecision.

Maximizationproblem:

)(:

111

ycypMax

s.t.)(

21

yybap&firm2’sreactionfunction)(

122

yfy

)(:

222

ycypMaxs.t.)(

12

yybap

Solution:backwardinduction

(1)Since

22122

)]([ycyyyba,thus,

02

21

2

2

cbyyba

y

,hence,firm2’sreactionfunctionis

b

ybca

y

2

1

2



(2)And

11211

)]([ycyyyba,substitutefirm2’sreactionfunction,then

Iso-profitcurvescanbeshownas)(

2

1

2

1111

bycyay

thus,optimalchoiceappearswhen

0)2(

2

1

1

1

1byca

dy

d

Sothat

b

ca

y

b

ca

y

4

2

*

2

*

1

eadershipmodel

Conditions:marketdemand)(

21

yybap,productsareidentical,marginalcostof

thetwofirmsare

221

2,yMCcMC,however,firm1ispriceleader,whomakes

hispricingdecisionfirst,firm2isfollower,whomakeshisdecisionwithknowingfirm1’s

decision.

TraditionalMethod:

Takinguofbackwardinduction:

Maximizationproblemsoffollower

)(:

2222

ycypMax

FOC:

22

2)(yyMCp

Thus,thereactionfunctionoffollowis

2

)(

22

p

pfy,inotherwords,it’ssupply

functionofthefollower.

Thenweconsiderthemaximizationproblemofpriceleader

)(:

1111

ycypMax

s.t.)()(

2121

yybayyDp

Substituting

2

)(

22

p

pfyintotheaboveconstraint,then,

p

bb

a

y)

2

11

(

1

,moregenerally,)(

11

pfy,whichisresidualdemandforfirm1.

Thenthemaximizationproblembecomes

))(()(:

1111

pfcpfpMax

p



Thus,FOCis

0)(1

1

11

1



dp

df

df

dc

dp

df

ppf

Hence,

22

*

c

b

a

p

,then

2

)

2

11

(

2

*

1

c

bb

a

y

,andthen

424

*

2

c

b

a

y

Comparison:eadershipmodel

Here,wetrytomakeacomparisonbetweenstackelbergmodelandpriceleadership

model,focusingontheesntialdifferencewithrespondtosolutionprocessandoutcome.

Conditionsofeconomicsituation;

marketdemand)(

21

yybap,productsareidentical,marginalcostofthetwo

firmsare

2211

,yMCyMC,however,firm1isdecisionleader,whomakeshis

decisionfirst,firm2isfollower,whomakeshisdecisionwithknowingfirm1’sdecision.

Ca(1):Stackelbergmodel

Solution:

er’sMaximizationproblemwithknowingfirm1’soutputquantitydecision

)(:

222

0

2

ycypMax

y



s.t.)(

12

yybap

Thus,FOCis02

221

2

2

ybyyba

y

Hence,therespondfunctionoffirm2is)(

122

yfy



b

yba

y

2

1

2

’sMaximizationproblemwithexpectingfirm2’sresponds

)(:

111

0

1

ycypMax

y



s.t.)(

21

yybap

&firm2’sreactionfunction)(

122

yfy

Substitutingallconstraintsintomaximizationproblem,thisyields

)()

2

(

11

1

11

ycy

b

bya

yba



Thus,FOCis0

2

2

2

2

11

2

1

1

1



yy

b

b

b

ab

bya

y



Hence,







)(22

2

2

*

1bb

abaab

y,

))(22)(2(

22

2

2

*

2







bbb

abbaabab

y

brium

))(22)(2(

32

2

222223

*









bbb

baababababab

p

Ca(2):PriceLeadershipmodel

Solution:

er’sMaximizationproblem,knowingfirm1’soutputquantityandpricedecision

)(:

222

0

2

ycypMax

y



s.t.)(

12

yybap

Atthistime,therearetworulesthatwedon’tknowwhetheritismatched.

FOC:

22

)(yyMCp,or

12

y

b

pa

y

Hence,therearetwoprobablereactionfunctions.

p

pfy)(

22

,or

1122

),(y

b

pa

ypfy



Ifbothoftheabovereactionfunctionsareequivalent,then

1

y

b

pap

,thatisfirm1’sresidualdemand:p

bb

ap

b

pa

y





11

1

’sMaximizationproblemwithexpectingfirm2’sresponds

)(:

111

ycypMax

p



s.t.p

bb

a

y



11

1

FOC:0

111111

21







b

p

bb

a

p

bb

a

p

Hence,

)2)((

22

*





aabbb

aabab

p





Thus,

)2(

2

*

1



aabb

aaa

y





,

)2)((

*

2



aabbb

aabab

y





Alsotherearetwoapproachestosolvingthisproblem,firstly,takingtheplaceofmaxp

andsubstitutingmaxy

1

,then,wehave





bb

a

y

2

*

1

,

)2)((

22

*





abbb

aabab

p





,

)2)((

*

2



abbb

aabab

y





Ca(3)Existingunmarketablegoodsinpriceleadership

Ontheotherhand,asgoodsinmarketareidenticalandover-suppliedisreality,

ore,unmarketablegoodsofmarketshareare

denoteunmarketableproportion,

21

21

21

1)(

yy

xx

yy

pf

,hence,quantity

offirm1’sunmarketablegoodsis

111

xyy,andthatoffirm2’sis

222

xyy.Now

wecandescribethemaximizationproblemsasfollow:

Forfirm2,)(

2222

y

2

yCxpMax

s.t.

21

1

2

2

)(

yy

pf

y

x



Thus,maximizationproblembecomesifconstraintissubstitutedintotheoriginalone.

)(

)(

222

21

1

2

yCy

yy

pf

pMax



Hence,theFOCoftheaboveproblemis

2

21

1

2)(

)(

yy

y

y

b

pap



Sothat,firm2’sreactionfunctioncanbedepictedas),(

122

ypy

Forfirm1,theleader,itsmaximizationproblemis

)(

1111

)y(p,

1

yCxpMax

s.t.

21

1

1

1

)(

yy

pf

y

x



andfollower’sreactionfunction),(

122

ypy

Thus,wehave)()(

11

21

1

1

1

)y(p,

1

yC

yy

y

pfpMax



s.t.2

21

1

2)(

)(

yy

y

y

b

pap



Solution:takinguofLagrangemethod,





2

21

1

2

11

21

1)(

)(

)(yy

y

y

b

pap

yC

yy

y

b

pa

pL

Hence,

0)(

)(

2

21

1

2

yy

y

y

b

papL



Then,thisyield2

21

1

2)(

)(

yy

y

y

b

pap



(1)

0

22

21

1

b

pa

yy

y

b

pa

p

L

Then,thisyield0

21

1



yy

y

(2)

0

)(

)(

2

1

3

2

21

2

21

2

1



y

y

yy

yy

y

b

pap

y

L



Substituting(1)&(2),then,

Wehave

21

yy(1*)

0

34

)(

)1()(

1

2

221

2

1

2

21

2



y

yyyy

yy

b

pap

y

L

Substituting(1)&(2),then,

Wehave

221

2

1

3yyyy(2*)

Combining(1*)&(2*),thus,



3

*

1

y,hence,

2

2

*

23

y

ca

本文发布于:2022-12-31 08:58:20,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/64463.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:amputation
下一篇:consultation
标签:monopoly
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图