ReviewofPlantBiotechnologyandAppliedGenetics
Geneticengineeringinfloriculture
YoshikazuTanaka1,*
,YukihisaKatsumoto1,FilippaBrugliera2&JohnMason2
1InstituteforAdvancedTechnology,SuntoryLtd.,1-1-1Wakayamadai,Shimamoto-cho,Mishima-gun,
Osaka,618-8503,Japan;2FlorigeneLtd.,16GippsStreet,Collingwood,Victoria3066,Australia(*requests
foroffprints:Fax:+81-75-962-8262;E-mail:Yoshikazu_Tanaka@)
Received21October2003;acceptedinrevidform10June2004
Keywords:colour,dia,ethylene,flower,gene,morphogenesis,scent
Abstract
Theglobalflcengineeringisprovidingavaluablemeansof
expandingtheflori-
cialisationofgeneticallyengineeredflowersiscurrentlyconfir,
furtherproductsareexpectedgiventhelevelofactivityinthefiraltermngineeredtraitsare
entonlyconsumertraitsappearabletoprovidea
returncapableosynthesisof
floralpigments,particularlyanthocyanins,hasbeenelucidatedingreatdetailinmodelflowerssuchas
owledgeisnowbeingappliedtoanunderstandingofawiderangeofotherflowersand
providingameansoftargetingcolourmodifiineeringofnoveltraitsina
givenvarietyalsorestsoncapabilitiesinplanttransformationthatarecontinuingtoexpandatarapidrate.
Theexpressionofgenestransferredacrossgeneraisnotalwayspredictableandsorequiresconsiderable
lationofmetabolicpathways,
areflectionofthecomplexity
rstandingofgene
functionisonlyanesntialfiductionofnovelflowercolourhas
beenthefirstsuccessstoryinflraitsthathavereceivedattention
includefloralscent,floralandplantmorphology,nescenceofflowersbothontheplantandpost-harvest
anddiaresistance.
Abbreviations:ACC–1-aminocyclopropane-1-carboxylicacid;AS–aureusidinsyntha;ANS–antho-
cyanidinsyntha;BAMT–S-adenosyl-L-methioninebenzoicacidcarboxylmethyltransfera;bHLH–
basichelix-loop-helix;CaMV35S–cauliflowermosaicvirus35S;C2¢GT–UDP-gluco:2¢,4,4¢,6¢-tetra-
hydroxychalcone2¢-O-glucosyltransfera;CHI–chalconeisomera;CHS–chalconesyntha;DFR–
dihydroflavonol4-reducta;F3H–flavanone3b-hydroxyla;F3¢H–flavonoid3¢-hydroxyla;F3¢5¢H–
flavonoid3¢,5¢-hydroxyla;LIS–S-linaloolsyntha;FLS–flavonolsyntha;FNS–flavonesyntha;
3GT–UDP-gluco:flavonoid3-O-glucosyltransfera;5GT–UDP-gluco:anthocyanin5-O-glucosyl-
transfera;PKR–polyketidereducta;STS–silverthiosulfate;THC–2¢,4,4¢,6¢-tetrahydroxychalcone
Introduction
TheglobalcutflowerindustryexceedsUS$27bil-
lioninannualretailsales(Chandler,2003)and
flowersmakeupabout
one-thirdofthevalueoftheglobalornamental
icationofwildspecies
inconjunctionwithclassicalbreedinghaslong
beentheprincipalroutetogenerationofnoveltyin
centlygeneticengineeringhas
PlantCell,TissueandOrganCulture(2005)80:1–24ÓSpringer2005
openedthedoortofurtherdevelopmentofnov-
bestdemonstratedinthe‘Moon’ries
transgeniccarnationsmarketedinNorthAmerica,
arnationsarethe
world’sfirstgeneticallyengineeredcommercial
flowershavingappearedsome10yearsafterthe
firstreportsofsuccessinthegeneticmanipulation
offlowercolourthroughplanttransformation
(Meyeretal.,1987).Theconsiderableactivityin
thisareaislikelytogeneratemoreproducts,
includingpottedfloweringplants,inthenottoo
modificationofflowercol-
ourisanobviousmeansofcreatingnovelty,
increasingly,asmoreandmoregenesarecharac-
terized,additionaltraitslendthemlvesto
manipulationparticularlythroughtheextensionof
classicalbreedingfollowinggeneticengineering.
Thecurrentglobalflowermarketisprimarily
suppliedbyspecializedgrowingandexporting
countriesthroughpressurebothfromdemandfor
terare
particularlyhighinthemajorflowermarketsof
theUSA,EuropeandJapanalthoughsignificant
localflowerproductionpersistsinJapan.
Traitstargetedformanipulationleadingto
noveltycanbeclassifiedasfortheconsumeror
sbothclasshavebeen
targetedbyclassicalbreeding,itisaconsumer
traitwhich,becauofitsrelativeprofitability,is
reprentedasthefirstsuccessfulattemptbyge-
neticengineerstocreatemarketablenovelcut
flsuchasflowercolour,formand
scentareprimarynoveltymarkersastheyarekey
ehave
reviewedthisfieldpreviously(Tanakaetal.,1998;
Moletal.,1999;Tanakaetal.,1999;Tanakaand
Mason,2003),wefocushereonmorerecent
progress.
Flowercolourmodification
Flowercolourandflavonoidbiosynthesis
Flowercolourispredominantlyduetothreetypes
ofpigment:flavonoids,carotenoidsandbetalains.
Betalainsaretheleastabundantofthethreeand
contributetovarioushuesofivory,yellow,or-
ange,redandviolet(Forkmann,1991).Carote-
noidsareC-40tetraterpenoidsthatarelipid
solubleandarelocatedintheplastidandcon-
tributetothemajorityofyellowhuesinanumber
offlowers(Forkmann,1991).Carotenoids,along
withredormagentaanthocyanins,alsocontribute
totheorange/red,bronzeandbrowncoloursen
infl
flavonoidsarethemostcommonofthethreetypes
ofpigmentandcontributetoarangeofcolours
ewater-soluble
compoundsandoccurinawiderangeofplants.
Theflavonoidmoleculeswhichmakethemajor
contributiontoflowercolouraretheanthocyanins
whichareallO-glycosides(Stafford,1990)andare
usuallylocalizedinthevacuolesofpetalepidermal
cells.
Themodificationofflowercolourviagenetic
engineeringhasgenerallyfocudonmetabolic
engineeringofthefloid
moleculesarecondarymetabolitesofthephe-
flavonoidpathway
leadingtothefirstcolouredanthocyanins,antho-
cyanidin3-O-glucosides,isgenerallyconrved
amongplantspecies(Figure1)andiswellestab-
hepathwayhasbeenrepeatedlyre-
viewedfromvariousperspectives(Forkmannand
Heller,1999;Springobetal.,2003;Tanakaand
Mason,2003)includingflowercolourmodification
bygeneticengineering(DaviesandSchwinn,1997;
Tanakaetal.,1998;Moletal.,1999;Forkmann
andMartens,2001;Martental.,2003a,b),re-
centprogressonlyisthefocusofthisctionand
ncoding
flavonoidpathwayenzymes(Figure1)havebeen
clonedfrommanyplants,includingfloricultural
crops,andcanbeeasilyextractedfrompublic
DNAdatabas(forexample,thewebsiteforthe
NationalCenterforBiotechnologyInformation
/).Thefirstcoloured
anthocyanins,anthocyanidin3-O-glucosidescan
befurthermodifiedwithsugars,aliphaticacids,
reboth
species-andvariety-specificdifferencesintheex-
tentofmodificationandthetypesofglycosyland
acylgroupsattachedtotheanthocyanidincore
r,thefinalvisiblecolourofa
flowerisgenerallyacombinationofanumberof
factorsincludingthetypeofanthocyaninaccu-
mulating,modificationstotheanthocyanidin
molecule,
ofthefactorsisregulatedbyanumberofgenes,
manyofwhichhavenowbeenclonedandchara-
cterid.
2
Modificationofanthocyanins
Anthocyaninscanoccuras3-O-monosides,3-O-
biosidesand3-O-triosidesaswellas3,5-O-digly-
cosidesand3,7-O-diglycosidesassociatedwiththe
sugarsgluco,galacto,rhamno,arabino
andxylo(StrackandWray,1993).Insome
speciessuchasros,theanthocyanidin3-O-glu-
cosidesaregenerallyfurtherglycosylatedatthe
5-positionbyUDP:glucoanthocyanin5-O-glu-
cosyltransfera(5GT)toproduceanthocyanidin
3,ssuchaspetuniaand
pansy,containaUDPrhamno:anthocyanidin3-
O-glucosiderhamnosyltransfera(3RT)which
addsarhamnogrouptothe3-O-boundgluco
oftheanthocyaninmoleculetoproducethe
anthocyanidin3-O-rutinosides.
AUDP-gluco:anthocyanin3¢-glucosyltrans-
feraactivityisfoundingentianthatspecifically
transfersglucotothe3¢positionofdelphinidin
oidbiosynthesispathwayrelevanttoflhwaytotheproductionofthefirstcolouredanthocyanins,
anthocyanidin3-O-glucosidescanbefurthermodifiedwithglycosyl,acylormethylgroupsinaspecies-specifi-
propanoids,anotherclassofplantcondarymetabolites,iationsinclude:C2¢GT–
UDP-gluco:tetrahydroxychalcone2¢-O-glucosyltransfera;CHS–chalconesyntha;CHI–chalconeisomera;AS–aureusidin
syntha;F3H–flavanone3b-hydroxyla;F3¢H–flavonoid3¢-hydroxyla;F3¢5¢H–flavonoid3¢,5¢-hydroxyla;DFR–di-
hydroflavonol4-reducta;ANS–anthocyanidinsyntha;FNS–flavonesyntha;FLS–flavonolsyntha;3GT–UDP-glu-
co:anthocyanidin3-O-glucosyltransfera.
3
3,ecDNAencodingthe
enzymewasco-expresdwithatorenia5GT
cDNAinapetunialinethatnormallyaccumulated
delphinidin3-O-glucosidepigments,delphinidin
3,5,3¢-rthe
effectonflowercolourwasnotreadilyobrvable
possiblyduetothelowabundanceoftheresulting
delphinidin3,5,3¢-O-triglucoside(Fukuchi-Mizu-
tanietal.,2003).AgeneencodingUDP-glu-
co:anthocyanin3¢,5¢-O-glucosyltransferahas
beenclonedfromClioriaternatea(butterflypea).
Theenzymecatalyzesquentialglucosylationsat
3¢-and5¢-noacidquence
wassurprisinglyverycloto3GTquences
(Nodaetal.,2004).
Manyanthocyanidinglycosidexistinthe
lgroupsthat
modifytheanthocyanidinglycosidescanbedi-
videdintotwomajorclassbadupontheir
phaticacylgroupsincludema-
lonicacidorsuccinicacidandthearomatic
classincludesthehydroxycinnamicacidssuchas
p-coumaricacid,caffeicacidandferulicacid.
AromaticacyltransferacDNAscatalyzingthe
transferofanaromaticacylgrouptothe3or5-O-
glucoofanthocyaninshavebeenisolatedfrom
perilla(Yonekura-Sakakibaraetal.,2000)and
lavender(Tanakaetal.,unpublishedresults),and
gentian(Fujiwaraetal.,1998)andtorenia(Ta-
nakaetal.,unpublishedresults),respectively.A
petuniageneencodinganaromaticacyltransfer-
acatalyzingthetransferofanaromaticgroupto
the3-rutinosideofanthocyanin3-O-glucosidehas
alsobeenisolated(BruglieraandKoes,unpub-
lishedresults).Theenzymestransferhydroxy-
cinnamoicacid(p-coumaricacidorcinnamicacid)
tospecifi-
maticacylationisthoughttocontributetobluing
andstabilizationofanthocyaninsandthusflower
colour(GotoandKondo,1991;HondaandSaito,
2002).
AcDNAcloneencodingmalonylCoA:antho-
cyanidin3-O-glucoside-600-O-malonyltransfera
wasrecentlyclonedfromdahliapetalsandex-
presdinapetunialinethataccumulatedcyani-
ghupto60%ofthe
anthocyaninwasmalonylated,nosignificantcol-
ourchangeswereobrved(Suzukietal.,2002).
Thisresultisnotentirelysurprisingasaliphatic
acylationdoesnotchangeanthocyaninspectrabut
contributestothestabilizationandsolubilization
rtothisamalonylCoA:
anthocyanidin5-O-glucoside-600-O-malonyltrans-
feracDNAwasclonedfromscarletsage(Salvia
splendens)(Suzukietal.,2001).Itngineered
expressioninaplanthasnotbeenreportedyetbut
theexpectationwouldbethattherewouldbeno
significanteffectonflowercolour.
Methylationatthe3¢and5¢positionsoftheB-
ringofanthocyanidinglycosidescanalsooccur.
Methylationofcyanidin-badpigmentsleadsto
ationofthe3¢
positionofdelphinidin-badpigmentsresultsin
theproductionofpetunidin,whilstmethylationof
the3¢and5¢positionsresultsinmalvidinpro-
rtothis,methylationofmalvidin
atthe5-Oand7-Opositionstoproducecapensinin
(5-O-methylmalvidin)(Harborne,1962;Har-
borne,1967)and5,7-di-O-methylmalvidincan
alsooccurinsomeplants(,unpublished
results).Alargegroupofmethyltransferagenes
havebeenisolated(IbrahimandMuzac,2000)
howeverthospecifictoanthocyaninmodifica-
tionhavebeenclonedfrompetunia(Quattrochio
etal.,1993;Bruglieraetal.,unpublishedresults)
andtorenia(Tanakaetal.,unpublishedresults).
Copigments
Flavonolsandflavonesarecommoncopigments
thatstabilizeandlendbluingtoanthocyaninsby
formingcomplexeswiththem(GotoandKondo,
1991).Flavonolsarederivedfromdihydroflavo-
nolsbytheactivityofflavonolsyntha(FLS).
ThegenencodingFLShavebeenclonedfrom
esaresynthesizedfrom
flavanonesbyflavonesyntha(FNS).Interest-
inglytherearetwokindsofFNS,adioxygena
type(FNSI)andacytochromeP-450type
(FNSII).TheFNSIIgenehasbeenclonedfrom
torenia,snapdragon(Akashietal.,1999),gerbera
(MartensandForkmann,1999)andperilla(Kit-
adaetal.,2001).AparsleyFNSIgenehasalso
beencloned(Martental.,2003a,b).
VacuolarpH
VacuolarpH,thatismostoftenmaintainedas
weaklyacidic,iscriticaltoanthocyaninstability
ghhigher(neutral)pHgener-
allyyieldsbluerflowercolours,anthocyaninsare
lessstableathigherpHandmustbestabilizedwith
4
morethanoneglycosylandaromaticacylgroup
(GotoandKondo,1991;HondaandSaito,2002).
GeneticcontrolofpetalvacuolarpHisknownin
ystructural
geneshowntoregulatevacuolarpHtodateen-
codesaNa+/H+antiporter(Purple)inmorning
glory(Fukada-Tanakaetal.,2000).Thegeneis
highlyexpresdjustbeforefloweropening,which
elevatespHfrom6.5to7.5andchangesthecolour
gueshavebeeniso-
latedfrompetunia,toreniaandNierembergia
(Yamaguchietal.,2001)buttheirfunctioninvivo
vacuolarpHhasbeenshownto
bespecifictoepidermalcellswhereanthocyanins
accumulate(Yoshidaetal.,1995).Giventhat
cytoplasmichomeostasisisalikelydriverofvac-
uolarpHgrossperturbationofvacuolarpHwould
ion
ofvacuolarpHusinganantiportergeneintrans-
genicplantsisyettobereported.
AlargenumberofcDNAclonencodingen-
zymesintheflavonoidandanthocyaninpathways
havebeenclonedandareavailabletothemolecular
engineerinordertomanipulateflowercolour.
Antinandco-suppression(nsuppression)
strategieshavecommonlybeenudtodown-regu-
dofthetwo
namelyRNAi(RNAinterference)hasrecentlybeen
developedasapowerfultoolfordown-regulation
ofatargetquence(WangandWaterhou,2001)
casthefrequencyofphenotypic
changesistypicallymorethan50%andthephe-
notypeismorestablethanthatobtainedusing
antinorco-suppression(Mizutanietal.,2003).
Regulatorsofflavonoidgenesandtheirapplication
tomodificationofflowercolour
Expressionprofilesofstructuralgenesorenzymes
offlavonoidbiosynthesisinflowers,leavesand
edlingshavebeenstudiedinmanyplantssuchas
petunia,snapdragon,gerbera,carnation,ro,li-
sianthus,eggplant,Arabidopsis,grape,perilla,as
reviewedpreviously(Tanakaetal.,1998;Tanaka
andMason,2003).Expressionofthegenesis
bothspatiallyanddevelopmentallyregulatedat
thetranscriptionallevelinacoordinatedwaythat
parallelsflavonoidbiosynthesis(Moletal.,1998).
Twogenefamilies,basichelix-loop-helix
(bHLH)andMyb-typetranscriptionalfactors
predominantlyregulatetheexpressionofthe
structuralgenesinthepathway(Moletal.,1998;
Springobetal.,2003).InvolvementofaWD40
proteinintheregulatorypathwaymaybealso
rewellcharacterizedinsnap-
dragon,petunia,arabidopsis,maizeandperillafor
example(Springobetal.,2003).Regulatorygenes
associatedwiththeanthocyaninpathwayare
functionallyconrvedamongplantspeciesbut
theyhavedistincttsoftargetgenes,whichex-
plainssomespecies-specificdiversityatleast.
Anincreainanthocyaninlevelshasbeen
achievedviaoverexpressionofgenencoding
mple,themaize
Lcallelegene(bHLH)underthecontrolofan
esntiallyconstitutive(CaMV35S)promoterled
toanincreaintheamountofanthocyaninsin
tobaccoflowers(Lloydetal.,1992).Expressionof
thesamegenesalsoresultedinincreadantho-
cyaninslevelsinfloralandvegetativetissues,
leaveswerepurpleduetoaccumulationofantho-
cyanins,andmayreprentanovelornamental
plantofcommercialvalue(Bradleyetal.,1998).
However,similarattemptstoenhanceanthocyanin
biosynthesisincarnationandrousingthesame
geneitherfailedtoproduceflowerswithsignifi-
cantlyenhancedanthocyaninbiosynthesisorre-
sultedinreducedanthocyaninbiosynthesis
(FlorigeneLtd.,unpublishedresults).Theresults
indicatelimitationstothebroadapplicationofthis
ericinterac-
tionsbetweentranscriptionfactorsmayproduce
unpredictedoutcomesasfactorscompetewith
eachotherforassociationwithgeneticelements.
Generatingwhiteflowersbygenesuppression
Downregulationofananthocyaninbiosynthesis
structuralgenehasbeenachievedinmanyplant
ybridizationandmutationalbreed-
ingalsoreadilyleadtodevelopmentofwhiteflower
varieties,someoftheresultsaremodelexperi-
mentsonlyastransformationtechnologyisgener-
allymoreexpensivethantraditionalbreeding.
Nevertheless,molecularbreedingofawhitevariety
canbecommerciallyviableasonlytheflowercol-
ourismodifiedpresumablywithoutsacrificingany
icular,when
thehostsaresterileortheresultanttransgenic
plantshavenovelcolourationpatterns,genetic
engineeringcancomplementtraditionalbreeding.
5
Itshouldbepossibletoobtainwhiteflowersfrom
anthocyaninproducingflowersbydown-regulating
theexpressionofoneofmanystructuralorregu-
sfulreductionof
anthocyaninbiosynthesishasbeenreportedin
petunia(vanderKroletal.,1988),gerbera(Elomaa
etal.,1993),chrysanthemum(Courtney-Gutterson
etal.,1994),ro(Gutterson,1995),carnation
(Gutterson,1995),lisianthus(Deroletal.,1998;
Katoetal.,2001)andtorenia(Aidaetal.,2000a;
Suzukietal.,2000;Mizutanietal.,2003,Fig-
ure2A).Morerecently,Nishiharaetal.(2003)
transformedabluegentian(Gentiantriflora)using
anantingentianCHSgeneandsuccessfully
obtainedtransgenicgentianplantswhoflower
(Japan)hasalsogen-
eratedtransgeniccyclamenwithdown-regulated
flowercoloursobtainedwere
white,red,pinkandamixtureofredandwhite.
TheCHSgeneisthemostcommontargetfor
down-regulationofanthocyaninbiosynthesis.
However,sinceblockageofCHScanresultin
flavonoid-freetransgenicplantsandflavonoids
havebeenfoundtoplayanimportantroleinUV
protection,generalplantdefenandsignaling
(Winkel-Shirley,2002),downregulationofthe
CHSgenemaynotreprentanidealstrategyto
,wehaveobrved
thatplantswhoCHSgeneissuppresdare
gu-
lationofothergenesinthepathway,suchasDFR
orF3H,maybeamoreviablealternativetogen-
eratingwhitefloweredvarietieswithoutdeleterious
sideeffr,asZukeretal.(2002)
unexpectedlyfoundwhentheydownregulated
carnationF3H,anthocyaninlevelswerenotthe
onlychangeobrvedinthetransgeniccarnations
nationswerealsomorefragrant
duetoanincreainmethylbenzoate,whichmay
beconsideredamorepositiveoutcomewhen
commercialisingtheflnetal.
(2002)discoveredthatco-suppressionofF3¢5¢Hor
DFRinpetuniaresultedinfemaleinfertility,pre-
sumablyduetotheaccumulationofdihydrofl-
avonolsintheedcoat.
Generatingblueflowers
Mostblueflowerscontainaromaticallyacylated
,chrysanthemumand
carnationmakeupover50%oftheworldcut
flowermarketbutonlyaccumulatepelargonidin
andcyanidinderivativesthatarenotmodifiedwith
eyhavebecome
targetsforattemptsatengineeringthesynthesisof
delphinidinderivativeswiththehopeofeventually
generatingblueflorbanceof
anthocyaninshiftstowardslongerwavelengths
(blue)byabout10nmwitheachhydroxylationof
theBringandby4nmfollowinganaromatic
acylation(GotoandKondo,1991).
Asdescribedpreviously,thekeyenzymeinthe
biosynthesisofdelphinidinisF3¢5¢H.F3¢5¢Hgenes
frompetuniaandlisianthushavebeenshownto
directproductionofabluehueinflowersof
petuniaandtobacco(Holtonetal.,1993a,Shi-
madaetal.,1999).IntroductionofaF3¢5¢Hgene,
isolatedfromCanterburybells(Campanulamed-
ium)resultedinflowerswithagreaterpercentage
ofdelphinidin(99%delphinidin)thanwhenthe
petuniaorlisianthusF3¢5¢Hgeneswereintroduced
(Okinakaetal.,2003).Thisispresumablydueto
moreefficientenzymeactivityoftheCampanula
F3¢5¢H.
TransformationofapinkLobeliaerinuswitha
lisianthusF3¢5¢Hgeneunderthecontrolofa
CaMV35Spromoterproducedbluecoloured
flhetransgenicplantsisshownin
aappearstobeaufulmodel
plantforthestudyofcolourmodificationasitis
easytotransformandflowersaslittleas3–
4monthsafterco-cultivationoftissuewithAgro-
bacteriumcarryingbinarytransformationvectors
(Kannoetal.,2003).
ExpressionofapetuniaF3¢5¢Hinacarnation
linethataccumulatedcyanidin-badpigments
resultedinverylowlevelsofdelphinidinproduc-
tionandnodramaticeffectonflowercolour
(Bruglieraetal.,2000b).Itappearsthatthe
introducedpetuniaF3¢5¢Hcouldnotefficiently
competewiththeendogenouscarnationF3¢Hand
r,whenapetuniacyto-
chromeb5genealongwiththepetuniaF3¢5¢Hgene
wereexpresdinthesamecarnationlinetheresult
wasadramaticimprovementinthelevelofdel-
phinidinproductionandashiftintheflowercol-
ourfromavariegatedpinkandredtovariegated
mauveandpurple(Figure2C).
ccess-
fullydevelopedarangeoftransgenicvioletcar-
nationsbyintroductionofaF3¢5¢Hgenetogether
6
modifiedflowers.(A).Colourmodifitivarissterileand
gene;thehost,middle;atransgeniclinewithaco-suppresd
DFRgene,right;atransgeniclinewithco-suppresdCHSgene(Suzukietal.,2000).(B)ColourmodificationofLobeliaerinus,Left:
thehost,right;atransgeniclobeliaexpressinglisianthusF3¢5¢H(Kannoetal.,2003).ofAomoriGreenBioCenter,Japan,
kindlyprovidedthephotos.(C)CarnationcultivarExquisite(left)accumulatespredominantlycyanidin-badpigments,transgenic
ExquisiteflowerexpressingpetuniaF3¢5¢Handcytochromeb5genes(right)accumulatespredominantlydelphinidin-badpigments
(Bruglieraetal.,2000b).(D)TransgeniccarnationexpressingF3¢5¢andard(upper)andtwospray
(lower)varietiesaresoldinUSA,AustraliaandJapan.(E)Orangepetuniaproducingpelargonidinwasmadefromaredoneproducing
cyanidinbydownregulationoftheF3¢HgeneandexpressionofroDFRgene(Mizutanietal.,2003).(F)Co-suppressionofthe
F3¢5¢waveBlueproducedpinkfl-expressionofatoreniaF3¢Hgeneinthelinegenerated
darkerpinkflowers(Ueyamaetal.,2002).(G)ApaleyellowpetuniaexpressingaLotusjaponicaPKRgenethatwaskindlyprovided
fNihonUniversity,Japan.(H)Morninggloryflapurpurea(CHS-D::Tip100),
Ipomoeanil(DFR-B::Tpn1).oandIidakindlyprovidedthephotos.
7
withapetuniaDFRgeneintoaDFR-deficient
whitecarnation(unpublished,Moletal.,1999).
Thepetalsoftheengineeredcarnationscontain
predominantlydelphinidinthatnativecarnations
luishhueinthetrans-
genicflowershasneverbeenachievedbytradi-
tionalbreedingofcarnation(Figure2D).The
transgenicvioletcarnationsnamedFlorigene
MoondusteandFlorigeneMoonshadowehave
beenmarketedinAustralia,Japan,NorthAmerica
andUKafterbeinggrantedgeneralreleaper-
estrategyhasbeenutilizedto
generatesimilarandevendarkerviolet-purple
coloursindifferentcarnationvarietiesbearing
differentflionflowersaretyp-
icallyavailableinthreeforms,spray,midiand
rigeneMoondusteandFlori-
geneMoonshadowecarnationsareofthemidi
type,FlorigeneMoonvistae,FlorigeneMoonac-
quae,FlorigeneMoonliteeandFlorigene
Moonshadee(Figure2D)arestandardcarnations
thathavebeendevelopedusingthesamestrategy
andarecurrentlysoldinNorthAmerica,Australia
andJapanarebeingtrialled,preparatorytoek-
ingapprovalforreleafromregulatoryauthori-
ties,inadditionalkeyproductionandmarketing
tionsgoverningthereleaof
geneticallymodifiedcropsarechangingworldwide
andinsomecasnewapprovalsforflowersal-
readyonthemarketarerequirednecessitating
extensivemolecularanalysisofthetransgenic
plantsfurtherraisingthecostofdevelopmentof
newproductsuchthatsomesmallmarketsareno
longerattractive.
TheflavonoidsofFlorigeneMoonshadowe
petalswereanalyzedindetail(Fukuietal.,2003).
Nativecarnationpetalsmainlycontainpelargon-
idinorcyanidin3,5-O-diglucoside-600-O-4,6¢¢¢-O-
nsgenicflowers
containeddelphinidin3,5-O-diglucoside-600-O-
4,6¢¢¢-O-1-cyclic-malyldiesterasthemajorpig-
esultsindicatethatcarnation
anthocyaninbiosyntheticenzymesareflexibleen-
petalsalsocontainedanapigenin6-C-glucosyl-7-
O-glucoside-6¢¢¢-malylesterthatisthoughttohave
exhibitedastrongco-pigmenteffuolar
pHoftheMoonshadowflowerwastimatedtobe
around5.5bymeasuringthepHofpetalcrush.
Thus,thebluecolourcanbeaccountedforbythe
accumulationofthedelphinidintypeanthocyanins
throughF3¢5¢Hgeneexpression,theprenceof
theflavone,astrongco-pigment,andtherelatively
onditions
shouldbefavourableforengineeringblueflowers
inotherspecies.
Copigmentlevelscanbemodifiedviagenetic
engineering,asFLSandFNSgeneshavealsobeen
rasflavonolsandflavonesshare
commonprecursorswithanthocyanins,thelevels
ofcopigmentandanthocyaninaregenerallyneg-
nsuppressionofthe
FLSgeneintobaccoresultedinadecreainthe
levelsofflavonolsanduptoa3-foldincreain
thelevelofanthocyanins(Holtonetal.,1993a,b).
However,down-regulationofthepetuniaFLSina
purplepetuniaresultedindecreadlevelsof
fl
flowerswereredderincolourpresumablydueto
thereducedco-pigmentlevels(Holtonetal.,
1993b).Nielnetal.(2001)downregulatedFLS
inlisianthus(Eustomagrandiflorum)usingan
sfromthetransgenic
plantsaccumulateddihydroflavonolsatthe
expenofflavonolsandasaresultwereredderin
edpigmenta-
tionwasalsoprentinearlystagebudsandthe
notypewas
stableandwasinheritedincondgeneration
plants.
Aidaetal.(2000b)obrvedthattheflowersof
toreniaharbouringanantinDFRgenewere
bluerthanthoharbouringanantinCHS
genebecauincompletedown-regulationofDFR
leadtoanaccumulationofflavonesandthe
resultingcopigmentationeffectwiththeremaining
anthocyaninsshiftedtheflowercolourtowards
ybeaufulstrategyfortheengi-
neeringofbluefleFNSIIgenein
bluetoreniawasdown-regulated,thelevelsof
flavonesweredecreadandthoofitsprecursor,
theflavanones,r,unex-
pectedly,thelevelsofanthocyaninswerereduced
andtheresultantflowercolourwaspaleblue
(Ueyamaetal.,2002).
Generatingredtoorangeflowers
PetuniaDFRisunabletoreducedihydroka-
empferolandsopetuniaflowersrarelycontain
pelargonidin-typeanthocyaninsandthereforedo
-
8
genicbrick-redpetuniasaccumulatingpelargoni-
din-typeanthocyaninshavebeenobtainedby
expressionofDFRgenesfromheterologousspe-
ciessuchasmaize,gerberaandroinamutant
petunialinethataccumulateddihydrokaempferol
(deficientinF3¢5¢H,F3¢HandFLS).Identification
ofasimilardihydrokaempferolaccumulatingline
incommerciallyimportantspecies(orcultivars)
canbediffinietal.(2003)wereableto
engineeraredpetunialinethatnormallyaccu-
mulatescyanidin-badpigmentstoproducepe-
largonidin-badpigments(orange)bydown
regulationoftheF3¢Hgeneandexpressionofa
roDFRgene(Figure2E).Manyimportantflo-
riculturalspeciesincludingcyclamen,delphinium,
iris,gentianandCymbidiumarepresumednotto
accumulatepelargonidinduetothesubstrate
specifir
strategiescouldthereforebeemployedtogenerate
orangecolouredflowersinthespecies.
Ueyamaetal.(2002)udatwo-steptrans-
formationprocesstoproducedarkpinkflowers
fromanormallyblueflllythe
F3¢5¢Hgenewasdownregulatedsothatapink
flrtransfor-
mationofthistoreniawithaCaMV35Spromoter
drivingatoreniaF3¢Hgeneanddifferentlection
markerresultedindarkpinktoreniaflowers.
(Figure2F).
Effortstogenerateyellowflowers
Chalconesandauronescontributetotheyellow
coloursobrvedinsomefltcom-
monchalcone,THC,isyellowbutisspontane-
ouslyisomerizedtonaringenininvitroandrapidly
isomerizedinvivobyCHI(Jezetal.,2000).In
yellowflowersofcarnation,peonyandperiwinkle,
THCaccumulatesasa2¢-glucoside(isosalipurpo-
side).AccumulationofTHC2¢-glucosideis
attributedtoadefit
study(Itohetal.,2002)showedthatbothCHIand
DFRgenesaredisruptedbyatransposoninv-
eralofthecarnationcultivarsthatbearyellow
flowersvariegatedwithwhiteflecksandctors.
Paleyellowcyclamenhasbeenalsoshowntobe
defioreitappearsthat
alackofCHIacitivityandprenceofaUDP-
gluco:THC2¢-glucosyltransfera(C2¢GT)
activityarerequiredfortheaccumulationofthe
iongenes
encodingC2¢GTactivityhaverecentlybeeniso-
lated(Ishidaetal.,2003;Okuharaetal.,2004).
Thereforegeneticengineeringofisosalipurposide
inflowersshouldnowbepossible.
Auronesarebrightyellowflavonoidsand
thereforeprovideyetanothertemptingtargetfor
sarefoundinyellow
flowersofdistantlyrelatedspeciesincluding
snapdragon,dahlia,limonium,zinniaandmorn-
synthesisofauroneswas,until
recently,oneofthelastunsolvedmysteriesoffla-
syntha,morespe-
cificallyaureusidinsyntha(AS),waspurified
fromyellowsnapdragonpetalsandthecDNA
encodingtheenzymewascloned(Nakayamaetal.,
2000).
InyellowvarietiesofsomeAsteraceaeplants
suchascosmosanddahlia,6¢-deoxychalconesare
themainpigments(DaviesandSchwinn,1997).
Deoxylationatthe6¢-positionofTHCiscatalyzed
bypolyketidereducta(PKR)(formallycalled
chalconereducta)whichstabilizesthechalcone
etal.(1998)
expresdaPKRcDNAfromMedicagosativaina
whitepetunialineandobtainedpaleyellowflow-
ersthataccumulatedthechalconesbutein3-O-
unately
thecolourwasonlyvisibleinflowerbudsandnot
intenenoughtoreprentanewyellowvariety
rresultswereob-
tainedbytransformingpetuniawithalicorice
PKRgene(Figure2G,Tanakaetal.,unpublished
results).Joungetal.(2001)reportedthatexpres-
sionofaPKRgenefromPuerariamontanain
tobaccochangedtheflowercolourfrompinkto
whiteastheresultofadecreainanthocyanins
andthenovelproductionoftheflavonoidliquiri-
tigenin.
Othermodificationstoflowercolour
Variegationpatternsinflowersandleavesareof-
tenhighlyvaluedinornamentalplantsandhave
beenstudiedinmorninggloryflowersformany
ationintheflowersiscaudbya
transposon(Figure2H,Iidaetal.,1999).Inrtion
ofatransposonintoaflavonoidbiosyntheticgene
oraregulatorygeneofthebiosyntheticpathway
hasresultedinwhitectorsinacolouredback-
onofsuchatransposonfroma
particulargeneoftenleadstocolouredctionson
9
l.(2001)engineered
variegatedflowersbytransformingtobaccousing
abinaryvectorcontainingtheArabidopsistrans-
posonTag1thatwasinrtedbetweenaCaMV35S
esulting
transgenicpetunias,theRgene,adominantposi-
tiveregulatorofanthocyaninbiosyntheticgenesis
the
transgenicplantxhibitedvariegatedflowerpat-
nehadadifferentpattern,with
rtheengi-
neeringoffloriculturecropswithtransposonswill
produceflowersofcommercialvalueisyettobe
determined,astheindustrytendstopreferstable
lines.
Generatinglonglifeflowers
Thepost-harvestlifeofflowersisinfluencedpri-
marilybynutrition,microbialcolonizationand
ethylene,acommonplanthormoneassociated
with,amongstotherrespons,
mostpopularcutflowersontheglobalmarketare
ro,e
endogenouthyleneproductiontriggersflower
ropinro
can,insomevarieties,bepromotedbyexposureto
exogenouthylenetypically,associatedwith
transportandstorageoffl
flowersaresusceptible,invaryingdegrees,to
microbialgrowthinvawaterleadingtoblockage
ofvasculartissuepreventingmovementofwaterin
thestem(xylem)andthuswiltingtypicallyleading
crobesaretypically
associatedwithflowersinproductionandclean
practicethroughallstagesofthepostharvest
treatment,includingpreparationofvawater,
nutrients,pri-
marilysugars,
suchdeficienciescanbeamelioratedthrough
applicationofnutrientadditivestovawater.
Carnationsaretypicallytreatedpostharvest
withsilverthiosulfate(STS)(orlesffective
alternativechemicals).Thistreatmenthasvarying
efficacydependingonthetimingoftreatment,
concentrationofthesolutionandflowertype.
Silvereffectivelyinterfereswiththeperceptionof
ethylenebytheflower(viabindingtothemem-
brane-associatedethylenereceptor)thusrender-
ingtheflowersinnsitivetoendogenousand
onsdepletedinsilver
willbelesffectiveincompleteknockoutofeth-
ytypecarnationswith
multipleflowersoneachstem,oftenatdifferent
stagesofdevelopment,therearisariskthatsome
flowerswillbeexpodtolesssilverthanothers
oodpracticecan
lasdasa
toxicchemicalandtheincreasingpressureonthe
industrytoreducetheusageofsuchchemicals
togetherwithadvancesinunderstandingoffloral
nescencehaveprovidedanopportunityforge-
neticengineerstoaddressprolonged,chemical-
free,r,commer-
cialisationofsuchaproductisyettooccurdue
primarilytothecostofengineeringthetraitina
rangeofdifferentcoloursandvarietiesbutalso
becau,asthereislittleknowledgeoftoxicityis-
sueswithconsumers,thereisreluctancetopay
extraforwhatisalreadyperceivedasalongva-
lifeflower(whenproperlytreated).Thuscom-
mercialisationhasstalled.
Anumberofdifferentbutrelatedstrategies
havebeenudtoengineerprolongedva-lifein
carnationswithouttheneedforchemicaltreat-
firstinvolveddownregulationof
ethyleneproductionincarnationflowersviapost-
transcriptionalfloral-specificgenesilencingofa
geneencodingACCOxida(ACO)(Savinetal.,
1995)orACCSyntha(ACS)(FlorigeneLtd.,
unpublishedresults,Figure3)theenzymescata-
lyzingthetwopenultimatestepsinethylenebio-
fttheflowersnsitiveto
exogenouthylenealbeitwithavalifecompa-
rabletothatobrvedwhenstemsaretreatedwith
ghexogenouthylene
levelshavenotbeenshowntobeanissueinthe
carnationtransportchaintheperceptionremains
thattheproductislessattractivethanchemically
ationoftheethylenetrans-
ductionpathwayinArabidopsis(Bleeckerand
Schaller,1996;Fluhr,1998)ledtotheisolationof
ageneencodingtheethylenereceptorfromAra-
bidopsis(Etr1)whichsubquentlyenabledpro-
ductionofcarnationflowerswithchemical-free
prolongedvalifeandinnsitivetoboth
endogenousandexogenouthylenethroughthe
introductionofamutatedArabidopsithylene
receptorgene(Etr1-1).Transgeniccarnation
plantsharboringtheEtr1-1geneunderthecontrol
ofitsownpromoter,aconstitutiveCaMV35S
10
promoter,oranFBP1(floralbindingprotein)
alfofthemhad
delayednescenceatleastby6days,witha
maximumdelayof16days,athree-foldincreain
elifewavenlongerthanin
flowerspretreatedwithchemicalsthatinhibiteth-
ylenebiosynthesisortheethylenerespon(STS)
(Bovyetal.,1999).Similarresultswereobtained
usingEtr1-1drivenbyaCMB2promoter(CMB2
isacarnationMADSboxgene(Baudinetteetal.,
2000,FlorigeneLtd.,unpublishedresults).
ConfinementofEtr1-1expressiontoflowers
hasbeendemonstratedtoproducethesame
phenotypeandhasanadvantagebadonthe
theoreticalconcernthatinterferencewithethyl-
eneperceptionthroughouttheplantwouldim-
pairtheplant’ot
beenshownwhetherthisisaproblemforfloral-
specificEtr1-1expressingplantsbutitdoes
appearlesslikely.
Anumberofpottedplantxhibitpetal
abscissioninrespontoethyleneandastrategy
aimedatengineeringameliorationofthiffecthas
-specificexpressionofthe
mutatedgenewoulddoubtlessbeadvantageous.
Aidaetal.(1998)havereporteddownregula-
tionofACOintwocultivarsofToreniafournieri.
Theaverageflowerlongevityofthetransgenic
toreniawithdown-regulatedACOwas2.7–
7.1days,whilethatofwild-typeplantswas
rmore,transgenicto-
reniaplantswiththeextendedflowerlifeproduced
moreflowerssimultaneouslyperstemthandidthe
racteristicofextended
flowerlifewasinheritedtotheprogenieslinkingto
theexistenceofthegene.
WhenEtr1-1wasintroducedintopetuniaun-
derthecontrolofanenhancedCaMV35Spro-
moter,thetransgenicpetuniaflowershadextended
flower-life(twotofourtimeslonger)anddelayed
abscissionrelativetothenon-transgeniccontrols.
Theywerealsoinnsitivetoexogenouthylene
butproducedmoreethylene(Wilkinsonetal.,
1997).Howeverconstitutiveethyleneinnsitivity
Etr1-1geneunderthecontrolofafloralbinding
protein(FBP1)oranapetala(AP3)promoterwas
60transgenicpetu-
70%and
30%oftheplants,respectively,hadflowerlifetwo
timesthatofthenon-transgenicpetuniaflowers.
SomeoftheplantshavingtheEtr1-1generegu-
latedbyaFBP1promoterhadfullyopenflowers
for14dayswhilenon-transgenichadfor3days
(Cobbetal.,2002).
Whenpetuniawastransformedwithamutated
ERS(anethylenereceptorgene)ofBrassicaoler-
acea,flowersofthetransgenicplantsretained
turgidityandpigmentationlongerthanthoof
non-transgenicplantsandwereinnsitiveto
ormedplantsproduced
largerflowersbuthadhighermortalitysuggesting
thattheethyleneinnsitivepetuniasweremore
susceptibletodia(Shawetal.,2002).
-lifecarnationwithdownregulatedpetalACCsyntha(FlorigeneLtd.).Thenativecarnations(left)nescedafter
2weeksofharvestwhilethetransgeniccarnations(right)havecomparableva-lifetoSTStreatedones(center).
11
Morphologicalmodification
Manypotentiallyufulgenesthatareinvolvedin
thepathwaysassociatedwithflowerandplant
riptional
factorsregulatingplantdevelopmentandbiosyn-
theticorregulatorygenesinvolvedinplanthor-
r,onlya
fewofthegeneshavebeenactuallyappliedto
flthefewcas,con-
stitutivepromoterswereusuallyemployed,which
sophisticatedregulationofexpressionofthe
genesmayproducefloriculturalcropswithnovel
ribeafew
exampleshere.
Controlofbranchingisconsideredtobeone
r-
expressionofapetuniazinc-fingertypetranscrip-
tionfactor,Lateral-shootInducingFactor(LIF),
inpetuniaunderthecontrolofaCaMV35Spro-
moterresultedinadramaticincreainthenumber
-orderbranches;which
rarelyforminwild-typepetuniaswerecommonin
ntshadadecread
numberofenlargedcellsinthestem,leafand
fleloffreecytokininswaslowerwhile
theirnucleosideandnucleotideformswerehigher
instemandleaves(Nakagawaetal.,submitted).
Indeedcytokininregulationisimportantifthegoal
istoincreathenumberofflenic
tobaccotransformedwithanAgrobacteriumipt
(isopentenyltransfera)geneunderthecontrolof
anArabidopsisleafnescencepromoterproduced
moreflowersduetodelayedleafnescence(Gan
andAmasino,1995).Delayofcorollanescencein
petuniahasbeenreportedwithanidenticalgene
construct(Changetal.,2003).
TherolCgenefromAgrobacteriumrhizogenes
nsgenic
plantsofPetuniacvMitchellexpressingrolCdri-
venbyaCaMV35Spromoterexhibitedvarious
morphologicalchangessuchasreducedplant
height,leafandflowersizeandincreadbranch-
ing(Winefieldetal.,1999).IntroductionofrolA,B
ay
reportedlyresultedinimprovedrootingcharac-
teristics(vanderSalmetal.,1997).
TheCENTRORADIALIS(CEN)geneof
snapdragonencodesaphosphatidylethanolamine
bindingproteinhomologueandisrequiredfor
ther
hand,tobaccoisadeterminatespeciesinwhich
shootmeristemsterminatebyconversiontofloral
oplantsover-expressingCEN
haveanextendedvegetativephawithmore
leavesandatallergrowthhabit,delayingthe
switchtofloweringformorethan10months
(Amayaetal.,1999).Modernrossuchashybrid
teaandfloribundavarietiesareusuallydetermi-
natebutindeterminatemutantsoftenariresult-
(2003)identifieda
transposonwhichwasinrtedinto‘aterminal
flower’homologueinthegenomeofdeterminate
onofthetransposonleadtoreversion
ofthedeterminaterostoindeterminateclimbing
esultssuggestthatupordown-reg-
ulationofCENanditsorthologuescouldbeud
toalterplantheightandarchitecture.
Chemicalssuchasuniconazolearewidelyud
nesinvolving
gibberellinbiosynthesisandsignalinghavebeen
isolated(Olszewskietal.,2002).Amongthem,a
mi-dominantmutationalleleofGAI,gai-1,
greatlyreducesgibberellicacidresponsiveness
necanbe
udtogeneratedwarfplantsasSuntoryLtdhas
successfullyinduceddwarfingbyintroducing
genomicgai-1quencesintopetunia(Figure4).
Modificationoffloralscent
Floralscentplaysanimportantroleinattracting
soimportanttoconsumer
choiceinflowerpurchaduetoitsnsualasso-
scentismadeupofvariouscom-
700ofthehavebeenidentifiedin
60familiesofplants(Knudnetal.,1993).They
arefattyacidderivativessuchasbenzenoids,
phenylpropanoidsandterpenoids(monoterpenes
andsquiterpenes).Thestructuresofhundredsof
thescentcompoundshavebeendetermined.
Althoughthenumberofclonedgenesinvolvedin
thebiosynthesisoffloralscentcompoundsis
steadilyincreasing,biochemicalandmolecular
biologicalknowledgeofthebiosynthesisofscent
compoundsisstilllimited(DudarevaandPicher-
sky,2002).Reportsofthemodificationoffloral
scentusinggeneticengineeringareevenrarer.
Generallyspeaking,floralscentcompoundsare
ymesin-
12
volvedinbiosynthesisoffloralscentxpress
stronglyinpetalepidermalcellsandtheirexpres-
sionisregulatedatthetranscriptionallevel
dependentonthestageofpetaldevelopment.
Maturepetuniaflowersmainlyreleaben-
issionhasacircadianrhythm
lesarenot
storedduringperiodsoflowemissionbutrather
-microarrayanalysishas
revealedthatgenesofthepathwayleadingtothe
productionofbenzoidsareupregulatedduringthe
dayprecedinganincreaintheiremission(Ver-
donketal.,2003).Thesynthesisofcarnation
flowervolatilesisdevelopmentallyregulatedandit
hasbeensuggestedthatsynthesisismembrane-
associatedandpartitioningintothecytosoloccurs
inaccordancewithpartitioncoefficients(Schadeet
al.,2001).Snapdragonpetalcuticlesprovide
hardlyanydiffusiveresistancetovolatilesandso
permitrapidemissionofthecompounds
(Goodwinetal.,2003).Theresultsimplythat
expressionofascentbiosyntheticgeneina
transgenicplantcanleadtoamodificationof
floralscent.
Thefirststructuralgeneisolatedencodinga
floralscentbiosyntheticenzymewasS-linalool
syntha(LIS)fromClarkiabreweri,aplantnative
toCaliforniathatemitsastrongsweetscentof
whichS-Linaloolisamajorcomponent.S-Linal-
oolisbiosynthesizedfromgeranylpyrophosphate,
anintermediateofvariousterpenoids,
LISgeneishighlyexpresdintheepidermalcells
ofpetalsandincellsofthetransmittingtractof
thestigmaandstyleandthelevelofproteinpro-
lso
beenshownthatspecializedscentglandsandre-
latedorgansarenonesntialtotheproductionof
floralscent(Dudarevaetal.,1996)whichsuggests
thatfloralscentcanbemodified,withoutthe
structuresbeingprent.
PetuniahybridaW115wastransformedwith
theClarkiaLIScDNAunderthecontrolofa
appropriateenzymaticactivitywasdetectedin
iaplanttransformedwithArabidopsisgai-1(right).Geneticmodificationmayreplacechemicalgrowthretardantsin
yobtainedthegaigenefgene
asHarberdattheJohnInnesCenter,Norwich,oraholdscommercialrightsforgaifor
ornamentalsthroughanagreementwiththepatentowners.
13
r,
onlyatraceofS-linaloolwasdetectedinflowers.
ItappearsthatmostofthesynthesizedS-linalool
wasconvertedintonon-volatileS-linalyl-b-D-
glucopyroanosidepresumablybytheactionofan
amountofS-linaloolanditsglycosideemedto
bedependentmoreontheavailabilityofthesub-
strateGDPthantheexpressionleveloftheLIS
gene(Luckeretal.,2001).Thesamegeneunder
thecontrolofaCaMV35Spromoterwasalso
hich
normallyproducesbenzoicacidderivativesand
ul-
tanttransgenicplantsproducedlinaloolandits
derivatives,r,
theemissionoflinaloolwasnotatalevelthatled
todetectablechangesinflowerscentasmeasured
bythehumanno(Lavyetal.,2002).Whenthe
samegenewaxpresdintomatofruit,enough
S-linaloolwasproducedtoenabledetectionbythe
humanno(Lewinsohnetal.,2001).There-
portsindicatethatmodificationofscentispossible
byintroducingageneencodingabiosynthetic
enzymeandthatanactivepathway,toprovide
sufficientlevelsoftheprecursor(geranylpyro-
phosphateinthisca)isnecessary.
Othermoleculartoolsformodificationoffloral
encod-
ingacetylCoA:benzylalcoholacetyltransfera
andbenzylCoA:benzylalcoholbenzoyltransfera
thatareresponsibleforproductionofbenzylace-
tateandbenzylbenzoate,respectively,andarein-
volvedinscentbiosynthesishavebeenclonedfrom
iandweresubquentlycharacterized
(Dudarevaetal.,1998).Thegeneencodingan
acetylCoA:alcoholacetyltransferafromstraw-
berrythatplaysacrucialroleinbiogenesisof
flavourduringfruitripening(Aharonietal.,2000)
andanacetylCoA:geraniolacetyltransferafrom
rothatalsoacceptsalcoholssuchascitronellol
and1-octanolassubstrate(Shalitetal.,2003)have
alsobeencloned.
Snapdragonflowermitamajorphenylprop-
anoidfloralscentcomponent,methylbenzoate.S-
Adenosyl-L-methionine:benzoicacidcarboxyl
methyltransfera(BAMT)catalyzesthefinalstep
inthebiosynthesisofmethylbenzoateandthe
correspondingcDNAhasbeencloned(Dudareva
etal.,2000).Emissionofmethylbenzoatein
snapdragonflowersoccursinarhythmicmanner
amountofbenzoicacidratherthanthelevelof
armolecu-
larmechanismisinvolvedintheproductionof
scentinnocturnallyemittingplants(tobaccoand
petunia)(Kolosovaetal.,2001).Theresults
indicatethatsuccessfulmodificationoffloral
scentscouldbeachievedbyoptimizingboth
expressionofdenovobiosyntheticgenesand
agonalso
emitsthemonoterpenes,myrceneand(E)-b-
ocimene,whicharebiosynthesizedfromgeranyl
lolyrelatedcDNAsof
twomyrcenesynthasandan(E)-b-ocimenehave
rmanew
-
natedregulationofphenylpropanoidandiso-
prenoidscentproductionhasbeenobrvedin
snapdragonflowers(Dudarevaetal.,2003).Even
thepetalsofarabidopsis,alf-pollinatedplant,
producesmallamountsofterpenesandcontain
terpenesyntha(Chenetal.,2003).
ThankstolargescaleESTquenceprojects,
roisnowanothersourceoffloralscentgenes
(Channeliereetal.,2002;Gutermanetal.,2002).
Rosproducemorethan400volatilecompounds
andappearlikelytobeagoodsourceofscent-
relatedgenessuchasthoencodingS-adenosyl-
methionine:orcinolO-methyltransfera(Lavid
etal.,2002;Scallietetal.,2002)andterpenoid
tentiallyuful
genes,suchaslimonenesynthas,forthealter-
ationoffloralscentshavebeenisolatedfromro
(Bohlmannetal.,1997;Luckeretal.,2002).
Aspreviouslymentionedtheunintentional
modificationfloralscenthasbeenreportedin
gulationoftheF3Hgenere-
sultedinadecreainanthocyaninleveland
resultantpalerflowercolourandanincreain
methylbenzoateandwerethereforemorefragrant
thanflgeofthe
anthocyaninbiosyntheticpathwaymaychangethe
metabolicfluxthroughthephenylpropanoid
pathway(Figure1,Zukeretal.,2002).
Diaresistance
Plantdiasbothlimitthetypeofplantsthatcan
begrowninagivengeographicareaandleadto
signififlori-
14
cultureindustryisthusvulnerabletoarangeof
diasresultinginsignificantannuallossand
dproduction
costsareadirectresultofspecificandbroad-
spectrumdiapreventionormanagementof
asonalorclimate-drivenvariationinpathogen
rofmeasuresareemployedto
-
calsareincommonuagainstboththeagents
andvectorsofdiaimpactingonthefloriculture
industry(domesticandcommercial).Theare
oftenexpensiveandtoxictoawiderangeof
organismsincluding,insomecas,
benefitisgainedbytheapplicationofbroad-
spectrumcompoundsdirectedatcommonpatho-
stocropmanagementcansometimes
beeffectiveagainstpathogensormanagementof
ofhydroponicsincarnation
productionforexamplegreatlyreducesboththe
likelihoodofpathogenattackandtheimpact
shouldanoutbreakoccurasitisreadilylocalized.
Suchregimesarefrequentlymoreexpensiveto
variousstrategiesudagainstpathogens,alarge
proportionofwhicharepathogenicfungi,con-
ventionalplantbreedinghasbeenthebestexploi-
r,thisapproachassumestheexistence
ofadequateresourcesofresistanceinthecropit-
tion,natural
barrierstohybridisationwillpreventtransferof
rproblemisthe
lengthoftimetakentodevelopresistantplants
andthelackofdurabilityoftheresistancedueto
thecomplexnatureofhost-parasiterelationships.
Geneticengineeringhasthepotentialtoovercome
someofthedifficultiesandreducetheimpactof
othersthusdeliveringtothegrowerlowerpro-
ductioncostsandimprovedcompetitiveness.
However,asbroadspectrumchemical-bad
strategiesareincommonuagainstmany
pathogensanyengineeredstrategymusttakethis
intoaccountorproductioncostswillnotbere-
ducedrenderingengineeredvarietiesunprofitable.
Astrongmotivationtolowerproductioncosts
andgrowingconcernabouttheenvironmentare
encouragingthedevelopmentofcropswhichre-
-
ducetheneedforchemicals,cropsneedtobe
developedwhichareresistanttofungal,bacterial,
viralandnematodepathogensandtotheinct
pestswhichbothtransmitdiasandthemlves
cengineeringhasbeenud
tomodifyassociatedtraitsinplantswithlimited
success.
Thereareover100,000differentspeciesof
fungus,morethan8,000ofthemcapableof
causingdiasinplants(Agrios,1988).All
plantsaresusceptibletofungalattackandtypi-
callyonefunguscanattackmorethanoneplant
allfungispendpartoftheirlife
cycleinthesoiloronplantdebrisinthesoil.
Differentsymptomsmayprentthemlvesasa
resultofinfectionofdifferenthostsbythesame
symptomsinplantsinfectedby
fungiarenecroticlesions,rot,wilt,stunting,rust
andmildew.
Whileplantdefenmechanismsarecomplex
theyappeartohavecommonsignalpathways.
Necroticlesionsreprentanattemptbytheplant,
throughlocalizedcelldeath,toproduceanaddi-
-
thermore,abroadrangeofgenesisactivatedina
plantinrespontothegenerationofwoundsand
theinvasionbyapathogen(Heath,2000;Martin
etal.,2003).Someofthearespecifictoapath-
ogenorgroupofpathogenswhileothersarein-
ed
numberofsuchgeneshavebeencharacterized,
someofwhichareimportanttoplant-pathogen
lgenes
havebeenidentifiedwhichencodeeitherenzymes
involvedinthesynthesisofcompoundstoxicto
fungiorproteinswithaninhibitoryeffectonthe
growthoffungi(CornelisnandMelchers,1993).
Centraltosuchdefenstrategiesisthemechanism
bywhichfungipenetrateplanttissuesandthusthe
compositionofbothplantandfungalcellwalls.
Fungalcellwallsarecommonly,thoughnot
always,compodofpolymersofchitinandb-1,3-
glucanandarethusvulnerabletodegradationby
theactionofchitinasorb-1,3-glucanas(Agri-
os,1988).Suchenzymesarecommoninplantsand
havebeenbestdescribedintobacco(Collingue
etal.,1993).Strategiemployedtoenhancethe
resistanceofplantsandmorespecificallyfloral
cropstofungalpathogenshavebeengenerally
limitedtoexpressionofhydrolyticenzymesor
antimicrobialcompounds(reviewedinPunja,
2001).
Fusariumwiltisamajordiaaffectingpro-
eenestimated
thatupto20%(dependingonlocation)ofeach
15
year’um
wiltiscaudbythefungusFusariumoxysporumf.
i(principallyrace2).Thisdiais
knowntobesoilborneandmeanstocontrolits
spreadhavecentredtodateonvarioussoiltreat-
ogicalevidence(Baayen,1998)indi-
catesthatthefungusfirstentersthecarnation
followedbycolonisa-
tionanddegradationofthevascularsystemofthe
heepi-
dermisandcortexofcarnationrootcanbecol-
rum,themainroutetothestem
isthroughthevascularsystem:Thisisprobably
penetratedviarootwoundsorregionsofstructural
weaknesssuchasbranchpoints.
Incarnationengineeringimprovedresistance
tofusariumwilthasmetwithsometechnical
r,thecommercialvalueifanyof
ion
varietiesaretypicallyratedwithregardtotheir
ionplants
typicallystayinthegroundfor2–3yearsanditis
duringthelatterhalfofthisperiodthatinfection
onic
growingsystems,thoughrelativelyexpensive,are
commonlyudtoconfineoutbreaksofinfection
ormationofanumber
ofcarnationvarietieswithageneencodinga
chitina,capableofhydrolyzingfungalcellwalls
invitro,andconstitutivelyexpresdusinga
CaMV35Spromoterproducedsomeeventswith
significantlydelayedontofsymptomsina
eexhibiting
delayedontofsymptomsanddelayedtimeto
death,rum
irace2(Bruglieraetal.,2000a),was
generatedviatransformationwithabacterial
chitinagene(ChiA)fromSerratiamarcens.
Thissuccesshasnotyetbeentranslatedtothe
field.
Gardenrosontheotherhandaresusceptible
toadifferentmixofailmentsincludingdowny
mildew(Peronosporasparsa),powderymildew
(Sphaerothecapannosa)andblackspot(Diplocar-
ponrosae).Adifferentsuiteofdiascallsonthe
uofdifferentstrategiesaimedatcurtailingloss
andspreadofinfection.
dingswastrans-
formedwithabasicclassIchitinageneviabio-
theresulting
transgenicroplantxhibitedreducednsitivity
toblackspotinfection(Marchant,1998).Black-
-
centlyLietal.,(2003)havereportedonenhanced
acvCarefreeBeautyto
powderymildewbyexpressionofanantimicrobial
proteingene(Ace-AMP1).
Transformationoffloriculturalspecies
Geneticallymodifiedplantsarecurrentlyculti-
vatedon58.7millionhectares,byabout5.5–6.0
millionfarmersin16countries(James,2002).
However,applicationandcommercializationof
thetechnologytofloriculturalcropsislimitedin
spiteoftheavailabilityofthemanypotentially
primarily
duetothelackofefficienttransformationsystems
forfloriculturalspeciesandtherathersmallmar-
ketsforeachspeciesincomparisontomajorfood
fficient,reproducible,cultivar-inde-
pendenttransformationsystemiscriticaltogen-
eratetherequisitenumberofelitetransgeniclines.
Successfultransformationshavebeendescribed
forover120speciesin35differentfamilies(Birch,
1997)
isthankstothedevelopmentofarangeofAgro-
bacterium-mediatedanddirectDNAdeliverytech-
niques,alongwithappropriatetissueculture
techniquesforregeneratingwholeplantsfromplant
cellsortissues(reviewedinGalunandBreiman,
1997;HannandWright,1999).However,many
speciesarestilldifficulttotransformefficientlyand
furtherimprovementisntialtoobtaintrans-
genicfloriculturalcropsofcommercialvalue.
Agrobacterium-mediatedtransformation
Themajorityofgenetransfersystemsudinor-
namentalcropsareAgrobacterium-mediated(De-
roletal.,1997).Onlyrecentprogressis
summarizedhere.
Themulti-auto-transformationvectorsystem
(MATVectorÒSystem)isbadonaunique
conceptsuchthatAgrobacteriumoncogenescanbe
udasalectablemarkertoregeneratetrans-
genicplantsandlectmarker-freetransgenic
VectorÒSystemisdesignedto
removetheoncogenesfromtransgenicplantsafter
transformationbyutilizingayeastsite-specific
recombinationsystem,R/dsofMAT
16
Vectors,cytokinin-typewiththeiptgeneofA.
tumefaciensandauxin-typewiththerolgenefrom
enes,areavailable(EbinumaandKom-
amine,2001).Thesystemprovidesanalternate
approachtoregeneratevariousrecalcitrantplant
speciesthroughinternalmanipulationofthe
cytokinin-to-auxinratio,anditalsoenablesto
producemarker-freetransgenicplantswithout
xualcrossandedproductionforapyramid
ofmultiplegenesbyrepeatedtransformation.
TransgenicAntirrhinummajusplantxpressinga
GUSgeneweresuccessfullygeneratedwiththe
auxin-typeMATvectorÒsystem(Cuietal.,2000;
Cuietal.,2001).
Woundingofplanttissueisalsoarate-limiting
stepinAgrobacterium-mediatedtransformation.
Sonication-assistedAgrobacterium-mediatedtrans-
formationgreatlyincreasthepenetrationof
bacteriainthehosttissue(TrickandFiner,1997).
Thetechniqueinvolvesbriefperiodsinwhichthe
targettissueisrepeatedlysubjectedtoultrasound
atment
producessmalluniformfissuresandchannelsin
thecellsallowingthebacteriaeasyaccessintothe
efficientAgrobacterium-mediated
transformationofcarnationwasachievedby
woundingstemexplantsviamicroprojectilebom-
bardmentfollowedbyco-cultivationwithAgro-
dtoovera10-foldincreain
transientGUSexpression(Zukeretal.,1999).
Recently,auniqueandsimplewounding
methodforAgrobacterium-mediatedtransforma-
tal.(2003a,b)
havereportedonatoolwhichinvolvespastinga
waterproof-sandpaperontheinsideofatube.
Targettissuesarethenwoundeduniformlyby
vortexingthetubecontainingculturemediaand
transgeniclilieswereobtained
viasubquentAgrobacterium-mediatedtransfor-
infiltration,
anotherinfectionaid,hasalsobeenshowntoim-
proveAgrobacterium-mediatedtransformation
(Bechtoldetal.,1993)thoughitsapplicationto
floriculturalcropshasnotbeenreportedtoour
floralspraymethodofAgrobac-
teriumcanalsoachievehighefficiencyinplanta
transformationcomparabletovacuum-infiltration
andflfloralspraymethod
opensupthepossibilityofinplantatransforma-
tionofplanttissueswhicharetoolargefordipping
orvacuuminfiltration(Chungetal.,2000).
Identificationofveralplantgenesinvolvedin
Agrobacterium-mediatedtransformation,andtheir
over-expressionincurrentlytransformablespecies,
suggestthatmanipulatingthehostapproachholds
greatpromiforimprovingthetransformationof
recalcitrant,buteconomicallyimportantplants
(Gelvin,2003).Transformationsoffloriculture
cropshavepreviouslybeenreviewed(Deroles
etal.,1997;Tanakaetal.,1999).Recentreportsof
transformationoffloriculturalcropsaredescribed
inTable1.
Tissuecultureandregenerationtechniques
Selectionofgenuinetransformantsandtheirsub-
quentregenerationandpropagationaretime
consumingandoftentherate-limitingstepinge-
neticengineeringofflhof
culturingandregenerationabilityofplantsdiffers
betweenspeciesandoftenbetweenvarietieswithin
nsformationprocessisdependent
ontheabilityofplanttissuetoproducetotiopo-
tentcellsthatcanberegeneratedintoacompletely
y,recipientplantcellsare
regeneratedtoproducewholeplantsthrougha
especies‘inplanta’
transformationhasallowedthetissueculturestep
pmentofregeneration
systemsforpelargonium(Mithilaetal.,2001)and
Catharanthusrous(Leeetal.,2003)haverecently
beenreported.
Continuedrearchshouldbedevotedtoim-
provethevarioustechnologiesandprocedures.
Thiswillallowthecommencementofnovelgenetic
rearchandthedevelopmentofnoveltransgenic
plantxpressingavarietyofphenotypes.
Concludingremarks
Theincreasinglyrapidisolationandidentification
ofplantgenesandthesomewhatslowermovement
towardsunderstandingcomplexgeneandgene
productinteractionsarebroadeningthescopeof
attemptsaimedatengineeringnoveltraitsinflo-
temptsrveelaborationof
modelsystemssuchasinarabidopsis,petuniaand
snapdragonaswellaxplorationsaimedat
developmentofnovelvarietiesforthemarket-
ributionofgenefunctionisusually
olationofthe
17
T
a
b
l
e
1
.
R
e
c
e
n
t
r
e
p
o
r
t
s
o
f
s
u
c
c
e
s
s
f
ul
A
g
r
o
b
a
c
t
e
r
i
u
m
t
u
m
e
f
a
c
i
e
n
s
-
m
e
di
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
o
f
fl
o
r
i
c
ul
t
u
r
e
c
r
o
p
s
S
p
e
c
i
e
s
A.
t
u
m
e
f
a
c
i
e
n
s
s
t
r
a
i
n
s
S
e
l
e
c
t
i
v
e
a
g
e
n
t
E
x
pl
a
n
t
R
e
f
e
r
e
n
c
e
s
D
e
n
d
r
o
b
i
u
m
a
n
d
O
n
c
i
d
i
u
m
o
r
c
hi
d
s
A
G
L
1
,
E
H
A
1
0
5
H
y
g
r
o
m
y
c
i
n
P
r
o
t
o
c
o
r
m-
l
i
k
e
b
o
di
e
s
Me
n
e
t
a
l
.
(
2
0
0
3
)
,
Li
a
u
e
t
a
l
.
(
2
0
0
3
)
P
h
a
l
a
e
n
o
p
s
i
s
o
r
c
hi
d
s
L
B
A
4
4
0
4
,
E
H
A
1
0
1
H
y
g
r
o
m
y
c
i
n
C
e
l
l
c
l
u
m
p
s
d
e
r
i
v
e
d
f
r
o
m
f
r
i
a
bl
e
c
a
l
l
i
f
r
o
m
fl
o
w
e
r
s
t
a
l
k
c
u
t
t
i
n
g
s
B
e
l
a
r
mi
n
o
a
n
d
Mi
i
(
2
0
0
0
)
B
e
g
o
n
i
a
s
e
m
p
e
r
fl
o
r
e
n
s
E
H
A
1
0
1
H
y
g
r
o
m
y
c
i
n
L
e
a
f
s
e
g
m
e
n
t
s
H
o
s
hi
e
t
a
l
.
(
2
0
0
3
a
,
b
)
B
e
g
o
n
i
a
t
u
b
e
r
h
y
b
r
i
d
a
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
L
e
a
f
di
s
c
s
Ki
y
o
k
a
w
a
e
t
a
l
.
(
1
9
9
6
)
El
a
t
i
o
r
b
e
g
o
ni
a
A
G
L
0
,
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
a
n
d
H
y
g
r
o
m
y
c
i
n
L
e
a
f
di
s
c
s
Ki
s
hi
m
o
t
o
e
t
a
l
.
(
2
0
0
2
)
C
y
c
l
a
m
e
n
p
e
r
s
i
c
u
m
Mi
l
l
.
A
G
L
0
,
L
B
A
4
4
0
4
,
E
H
A
1
0
5
K
a
n
a
m
y
c
i
n
o
r
H
y
g
r
o
m
y
c
i
n
Et
i
ol
a
t
e
d
h
y
p
o
c
o
t
y
l
s
o
r
p
e
t
i
ol
e
s
e
g
m
e
n
t
s
Ai
d
a
e
t
a
l
.
(
1
9
9
9
)
,
B
o
a
s
e
e
t
a
l
.
(
2
0
0
2
)
,
A
s
a
o
a
n
d
T
s
u
z
u
ki
(
2
0
0
2
)
R
e
g
a
l
a
n
d
z
o
n
a
l
P
e
l
a
r
g
o
ni
u
m
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
L
e
a
f
di
s
c
s
D
e
l
r
ol
e
s
e
t
a
l
.
(
1
9
9
7
)
R
e
g
a
l
P
e
l
a
r
g
o
ni
u
m
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
6
-
w
e
e
k
-
ol
d
i
n
v
i
t
r
o
g
r
o
w
n
pl
a
n
t
l
e
t
s
a
s
a
s
o
u
r
c
e
o
f
l
e
a
f
-
l
a
mi
n
a
e
x
pl
a
n
t
s
B
o
a
s
e
e
t
a
l
.
(
1
9
9
8
)
N
e
m
e
s
i
a
s
t
r
u
m
o
s
a
G
V
2
2
6
0
K
a
n
a
m
y
c
i
n
S
t
e
m
s
e
g
m
e
n
t
s
C
ui
a
n
d
E
z
u
r
a
(
2
0
0
3
)
C
h
r
y
s
a
n
t
h
e
m
u
m
E
H
A
1
0
1
,
L
B
A
4
4
0
4
,
A
G
L
0
G
4
1
8
,
K
a
n
a
m
y
c
i
n,
P
a
r
o
m
o
m
y
-
c
i
n
L
e
a
f
s
e
g
m
e
n
t
s
S
hi
n
o
y
a
m
a
e
t
a
l
.
(
2
0
0
2
)
,
S
hi
n
o
y
a
m
a
e
t
a
l
.
(
2
0
0
2
)
,
Ai
d
a
e
t
a
l
.
(
2
0
0
4
)
C
a
r
n
a
t
i
o
n
A
G
L
0
K
a
n
a
m
y
c
i
n
S
t
e
m
s
e
g
m
e
n
t
s
n
o
d
e
e
x
pl
a
n
t
s
.
Z
u
k
e
r
e
t
a
l
.
(
1
9
9
9
)
,
E
s
t
o
p
a
e
t
a
l
.
(
2
0
0
1
)
,
N
o
n
t
a
s
w
a
t
s
r
i
e
t
a
l
.
(
2
0
0
4
)
D
e
l
p
hi
ni
u
m
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
o
r
H
y
g
r
o
m
y
c
i
n
El
o
n
g
a
t
e
d
h
y
p
o
c
o
t
y
l
a
n
d
c
o
t
y
]
e
d
o
n
p
e
t
i
ol
e
s
e
g
m
e
n
t
s
Hi
r
o
s
e
e
t
a
l
.
(
2
0
0
2
)
C
a
m
p
a
n
ul
a
L
B
A
4
4
0
4
,
E
H
A
1
0
5
K
a
n
a
m
y
c
i
n
L
e
a
f
s
e
g
m
e
n
t
s
J
o
u
n
g
e
t
a
l
.
(
2
0
0
1
)
G
e
n
t
i
a
n
E
H
A
1
0
5
,
E
H
A
1
0
1
H
y
g
r
o
m
y
c
i
n
L
e
a
f
di
s
c
s
Ni
s
hi
h
a
r
a
e
t
a
l
.
(
2
0
0
3
)
L
o
b
e
l
i
a
G
V
3
1
0
1
,
E
H
A
1
0
5
K
a
n
a
m
y
c
i
n,
H
y
g
r
o
m
y
c
i
n
H
y
p
o
c
o
t
y
l
-
r
o
o
t
s
e
c
t
i
o
n
s
f
r
o
m
a
x
e
-
ni
c
a
l
l
y
g
r
o
w
n
s
e
e
dl
i
n
g
s
,
l
e
a
f
o
r
c
o
t
y
l
e
d
o
n
di
s
c
s
P
a
y
n
e
a
n
d
Ll
o
y
d
(
1
9
9
8
)
,
T
s
u
g
a
w
a
e
t
a
l
.
(
2
0
0
1
,
2
0
0
4
)
Li
l
y
E
H
A
1
0
1
H
y
g
r
o
m
y
c
i
n
Fi
l
a
m
e
n
t
-
d
e
r
i
v
e
d
c
a
l
l
i
H
o
s
hi
e
t
a
l
.
(
2
0
0
3
a
,
b
)
Al
s
t
r
o
m
e
r
i
a
E
H
A
1
0
1
,
L
B
A
4
4
0
4
H
y
g
r
o
m
y
c
i
n
O
v
ul
e
-
d
e
r
i
v
e
d
c
a
l
l
i
H
o
s
hi
n
o
e
t
a
l
.
(
2
0
0
1
)
A
g
a
p
a
n
t
h
u
s
L
B
A
4
4
0
4
,
E
H
A
1
0
1
H
y
g
r
o
m
y
c
i
n
L
e
a
f
-
d
e
r
i
v
e
d
e
m
b
r
y
o
g
e
ni
c
c
a
l
l
i
S
u
z
u
ki
e
t
a
l
.
(
2
0
0
1
)
S
n
a
p
d
r
a
g
o
n
G
V
2
2
6
0
,
G
V
3
1
0
1
K
a
n
a
m
y
c
i
n
L
e
a
f
s
e
g
m
e
n
t
s
h
y
p
o
c
o
t
y
l
e
x
pl
a
n
t
s
C
ui
e
t
a
l
.
(
2
0
0
0
,
2
0
0
4
)
C
a
l
i
f
o
r
ni
a
p
o
p
p
y
G
V
3
1
0
1
P
a
r
o
m
o
m
y
c
i
n
C
o
t
y
l
e
d
o
n
s
P
a
r
k
a
n
d
F
a
c
c
hi
ni
(
2
0
0
0
)
S
a
i
n
t
p
a
u
l
i
a
i
o
n
a
n
t
h
a
E
H
A
1
0
5
,
A
2
8
1
K
a
n
a
m
y
c
i
n
L
e
a
v
e
s
a
n
d
p
e
t
i
ol
e
s
Me
r
c
u
r
i
e
t
a
l
.
(
2
0
0
0
)
,
K
u
s
hi
k
a
w
a
e
t
a
l
.
(
2
0
0
1
)
R
o
s
e
L
B
A
4
4
0
4
K
a
n
a
m
y
c
i
n
E
m
b
r
y
o
g
e
ni
c
c
a
l
l
i
Ki
m
e
t
a
l
.
(
2
0
0
4
)
V
e
r
b
e
n
a
A
G
L
0
K
a
n
a
m
y
c
i
n
S
t
e
m
s
e
g
m
e
n
t
s
T
a
m
u
r
a
e
t
a
l
.
(
2
0
0
3
)
18
understandingderivedfromsuchstudiesoften
providesacarrotudtoenticecommercial
applicationofgenes,increasinglyasourceof
remunerationforrearchbodieshungryfor
funds,tonotonlypromoteinstitutionalR&Dbut
alsotosupportwhatareoftenheftypatentcosts
associatedwithattemptsatprotectionoftheR&D.
Furthertotheadvancestheincreasingnumberof
transformablefloriculturespecies(andvarieties)is
addingtothestoreofexperimentaldataaswellas
tothepotentialforcommerciallyviableproducts.
Inspiteofallthisgrowththecommercialappli-
cationofgeneticengineeringinfloriculturere-
rofkeyhurdleswillhavea
majorimpactonthefieldfortheforeeablefu-
eredandcommerciallyviabletraitsare
rareandareconfinedtothodirectedatthe
dtimetomarketareinfluenced
mtooperateand
regulatoryapprovalsforwhatisntiallyaglo-
balmarketarekeyhurdlesfortoday’sfloriculture
rtotheandcompoundedbythe
coststheyincuristhepaucityoftraitsinfloricul-
turewhichcanbereadilyengineeredandwhich
cancommandaviablepremiumonagivenprod-
illcomedownasthetechnologyma-
tures(andcomesoffpatent)anddevelopmentcosts
fornew,relatedproductsareamortidagainstthe
sibilityoftraitengi-
neeringrestsnotonlyontheidentificationof
appropriategenesbutalsothefactthatsome
traits,flowercolourbeingoneofthem,involve
manipulationofmetabolicpathwayswhichfre-
quentlyrequiretheintroductionofmultiplegenes.
Theefficientfunctionofmultipletransgenesis
interimatleasttheuoftraditionalbreedingis
onewaytoovercomethislimitationatthepossible
costofsignificantlylongerdevelopmenttimesfor
helessthefloriculture
industrywillbenefitinthelongtermandthe
numberofengineeredcropsonthemarketwill
doubtlessriovertheyearsahead.
Acknowledgementss
WeacknowledgeDrSuzuki(AomoriGreenBio-
Center),DrAyabe(HihonUniversity),Drs
HoshinoandIida(NationalInstituteforBasic
Biology)andDrDobres(NovaFlora)forprovid-
ingphotosorgenes(efigurelegendsfordetails).
WethankDrYamamuraofIwateBiotechnology
RearchCenter(Japan)andDrTakatsujiof
NationalInstituteofAgrobiologicalSciences(Ja-
pan)
gratefultopastandcurrentcolleaguesofSuntory
Ltd.,Japan,FlorigeneEuropeBV,TheNether-
landsandFlorigeneLtd.,Australia.
References
AgriosGN(1988)icPress,
SanDiego
AharoniA,KeizerLC,BouwmeesterHJ,SunZ,Alvarez-
HuertaM,VerhoevenHA,BlaasJ,vanHouwelingenAM,
DeVosRC,vanderVoetH,JannRC,GuisM,DavisRW,
SchenaM,vanTunenAJ&O’ConnellAP(2000)Identifi-
cationoftheSAATgeneinvolvedinstrawberryflavor
ell12:647–
662
AidaR,HiroY,KishimotoS&ShibataM(1999)Agrobac-
teriumtumefaciens-mediatedtransformationofCyclamen
ci.148:1–7
AidaR,KishimotoS,TanakaY&ShibataM(2000a)
Modificationofflowercolorintorenia(Toreniafournieri
Lind.)ci.153:33–42
AidaR,YoshidaK,KondoT,KishimotoS&ShibataM
(2000b)Copigmentationgivesbluerflowersontransgenic
toreniaplantswiththeantindihydroflavonol-4-reducta
ci.160:49–56
AidaR,OhiraK,TanakaY,YoshidaK,KishimotoS,Shibata
M&OhmiyakA(2004)Efficienttransgeneexpressionin
Chrysanthemum,Dendranthemagrandiflorum(Ramat.)Ki-
tamura,byusingthepromoterofageneforChrysanthemum
chlorophyll-a/ngSci.54:51–58
AidaR,YoshidaT,IchimuraK,GotoR&ShibataM(1998)
Extensionofflowerlongevityintransgenictoreniaplants
ci.138:91–101
AkashiT,Fukuchi-MizutaniM,AokiT,UeyamaY,Yonek-
ura-SakakibaraK,TanakaY,KusumiT&AyabeS(1999)
Molecularcloningandbiochemicalcharacterizationofa
novelcytochromeP450,flavonesynthaII,thatcatalyzes
directconversionofflavanonestoflell
Physiol.40:1182–1187
AmayaI,RatcliffeOJ&BradleyDJ(1999)Expressionof
CENTRORADIALIS(CEN)andCEN-likegenesintobacco
revealsaconrvedmechanismcontrollingphachangein
ell11:1405–1418
AsaoH&TsuzukiM(2002)Anefficienttransformationsystem
.71:518
BaayenRP(1998)Thehistologyofsusceptibilityandresistance
rt.216:119–124
BaudinetteSC,StevensonTW&SavinKW(2000)Isolation
andcharacterisationofthecarnationfloral-specificMADS
boxgene,ci.155:123–131
BechtoldN,EllisJ&PelletierG(1993)InplantaAgrobacterium
mediatedgenetransferbyinfiltrationofadultArabidopsis
.316:1194–1199
19
BelarminoMM&MiiM(2000)Agrobacterium-mediated
ell
Rep.19:435–442
BirchRG(1997)Planttransformation:problemsandstrategies
ol.
Biol.48:297–326
BleeckerAB&SchallerGE(1996)Themechanismofethylene
hysiol.111:653–660
BoaMR,BradleyJM&BorstNK(1998)Animproved
methodfortransformationofregalpelargonium(Pelargo-
nium·domesticumDubonnet)byAgrobacteriumtumefac-
ci.139:59–69
BoaMR,MarshallGB,PetersTA&BendallMJ(2002)
Long-termexpressionofthegusAreportergeneintransgenic
.70:27–39
BohlmannJ,SteeleCL&CroteauR(1997)Monoterpene
synthasfromgrandfir(Abiesgrandis).cDNAisolation,
characterization,andfunctionalexpressionofmyrcenesyn-
tha,())-(4S)-limonenesyntha,and())-(1S,5S)-pinene
.277:21784–21792
BovyAG,AngenentGC,DonsHJM&vanAtvorstA-G
(1999)HeterologouxpressionoftheArabidopsitr1-1
alleleinhibitsthenescenceofcarnationflci.
5:301–308
BradleyJM,DaviesKM,DerolesSC,BloorSJ&LewisDH
(1998)ThemaizeLcregulatorygeneup-regulatestheflavo-
.13:381–392
BruglieraF,Kalc-WrightG,HylandC,WebbL,HerbertS,
SheehanB&MasonJG(2000a)ImprovementofFusarium
ment
er18(2)
BruglieraF,TullD,Holton,TA,KaranM,TreloarN,
SimpsonK,SkurczynskaJ&MasonJG(2000b)Introduc-
tionofacytochromeb5enhancestheactivityofflavonoid
3¢,5¢-hydroxyla(acytochromeP450)intransgeniccarna-
er18(2)
ChandlerSF(2003)Commercializationofgeneticallymodified
iotech.5:69–77
ChangH,JonesML,NanowetzGM&ClarkDG(2003)
Overproductionofcytokininsinpetuniaflowerstransformed
withPSAG12-IPTdelaycorollanescenceanddecrea
hysiol.132:2174–2183
ChanneliereS,RiviereS,ScallietG,SzecsiJ,JullienF,Dumas
C,BendahmaneM,HugueneyP&CockJM(2002)Analysis
ofgeneexpressioninropetalsusingexpresdquence
tt.2002:35–38
ChenF,ThollD,D’AuriaJC,FarooqA,PicherskyE&
GershenzohJ(2003)Biosynthesisandemissionofterpenoid
volatilesfromarabidopsisflell15:481–494
ChungM-H,ChenM-K&PanS-M(2000)FloralSpray
TransformationCanEfficientlyGenerateArabidopsis.
TransgenicRes.9:471–486
CobbD,SchneiterN,GuoS,HumistonGA,HarrisonB&
BolarJ(2002)Flowerspecificexpressionofanethylene
receptor(etr1-1)conferthyleneinnsitivityintransgenic
:TheAbstractofXVIInternationalHorticultural
Congress(p.68),Toronto,Canada
CollingueDB,KraghKM,MikkelnJD,NielnKK,
RasmusnU&VadK(1993).3:
31–40
CornelisnBJC&MelchersLS(1993)Strategiesforcontrolof
hysiol.101:
709–712
Courtney-GuttersonN,NapoliC,LemieuxC,MorganA,
FiroozababyE&RobinsonKEP(1994)Modificationof
flowercolorinFlorist’sChrysanthemum:productionofa
white-fl/
Technol.12:268–271
CuiM-L&EzuraH(2003)Agrobacterium-mediatedtransfor-
mationofNemesiastrumosaBenth,amodelplantfor
ci.165:863–870
CuiM-L,TakayanagiK,KamadaH,NishimuraS&HandaT
(2000)-type
multi-auto-transformation(MAT)ci.
159:273–280
CuiM-L,TakayanagiK,KamadaH,NishimuraS&HandaT
(2001)Efficientshootregenerationfromhairyrootsof
ormedbytheroltypeMAT
ellRep.20:55–59
CuiM-L,EzuraH,NishimuraS,KamadaH&HandaT(2004)
ArapidAgrobacterium-mediatedtransformationofAntirrhi-
gdirectshootregenerationfrom
ci.166:873–879
D’AuriaJC,ChenF&PicherskyE(2002)Characterizationof
anacyltransferacapableofsynthesizingbenzylbenzoate
andothervolatileestersinflowersanddamageleavesof
hysiol.130:466–476
DaviesKM&SchwinnKE(1997)Biotechnologyoforna-
:GeneveRL,PreeceJE&MarkleSA(eds)
BiotechnologyofOrnamentalPlants(pp.259–294).CAB
International,Wallingford
DaviesKM,BloorSJ,SpillerGB&DerolesSC(1998)
Productionofyellowcolourinflowers:redirectionof
fl.13:259–266
DerolesSG,BoaMR&KonczakI(1997)Transformation
:GeneveRL,PreeceJE&
MarkleSA(eds)BiotechnologyofOrnamentalPlants(pp.
87–119).CABInternational,Wallingford
DerolesS,BradleyJM,SchwinnKE,MarkhamKR,BloorS,
MansonDG&DaviesKM(1998)Anantinchalcone
synthacDNAleadstonovelcolourpatternsinlisian-
thus(Eustomagrandiflorum)fl.4:59–
66
DudarevaN&PicherskyE(2002)Biochemicalandmolecular
geneticaspectsofflhysiol.122:627–633
DudarevaN,CkeL,BlancVM&PicherskyE(1996)
EvolutionoffloralscentinClarkia:novelpatternsofS-
iflowers.
PlantCell8:1137–1148
DudarevaN,D’AuriaJC,NamKH,RagusoRA&Pichersky
E(1998)Acetyl-CoA:benzylalcoholacetyltransfera:an
enzymeinvolvedinfloralscentproductioninClarkiabreweri.
PlantJ.14:297–304
DudarevaN,MurfittLM,MannCJ,GorensteinN,Kolosova
N,KishCM,BonhamC&WoodK(2000)Developmental
regulationofmethylbenzoatebiosynthesisandemissionin
snapdragonflell12:949–961
DudarevaN,MartinD,KishCM,KolosovaN,GorensteinN,
FaldtJ,MillerB&BohlmannJ(2003)(E)-b-ocimene
synthaandmyrcenesynthagenesoffloralscentbiosyn-
thesisinsnapdragon:functionandexpressionofthree
20
terpenesynthagenesofanewterpenesynthasubfamily.
PlantCell15:1227–1241
EbinumaH&KomamineA(2001)Mat(Multi-Auto-Trans-
formation)ogenesofAgrobacterium
aspositivemarkersforregenerationandlectionofmarker-
oCellularDevelpomentBiol.
Plant37:103–113
ElomaaP,HonkanenJ,PuskaR,SeppanenP,HelariuttaY,
MehtoM,KotilainenM,NevalainenL&TeeriTH(1993)
Agrobacterium-mediatedtransferofantinchalconesyn-
thacDNAtoGerberahybridainhibitsflowerpigmentation.
Bio/Technology11:508–511
EstopaM,MarfaV,MeleE&MesguerJ(2001)Studyof
differentantibioticcombinationsforuintheeliminationof
.65:211–220
FluhrR(1998)Ethyleneperception:fromtwo-component
PlantSci.3:
141–145
ForkmannG(1991)Flavonoidsasflowerpigments:the
formationofthenaturalspectrumanditxtensionby
reed.106:1–26
ForkmannG&HellerW(1999)Biosynthesisoffl:
SankawaU(ed)PolyketidesandOtherSecondaryMetabo-
litesIncludingFattyAcidandTheirDerivatives(pp.713–
748).Elvier,Amsterdam
ForkmannG&MartensS(2001)Metabolicengineeringand
applicationsofflhnol.12:155–
160
FujiwaraH,Tanaka,Y,Yonekura-SakakibaraK,Fukuchi-
MizutaniM,NakaoM,FukuiY,YamaguchiM,AshikariT
&KusumiT(1998)cDNAcloning,geneexpressionand
subcellularlocalizationofanthocyanin5-aromaticacyltrans-
ferafromGentianatrifl.16:421–431
Fukada-TanakaS,InagakiY,YamaguchiT,SaitoN&IidaS
(2000)
407:581
Fukuchi-MizutaniM,OkuharaH,FukuiY,NakaoM,
KatsumotoY,Yonekura-SakakibraK,KusumiT,HaT
&TanakaY(2003)Biochemicalandmolecularcharacter-
izationofanovelUDP-gluco:anthocyanin3¢-O-glucosyl-
transfera,akeyenzymeforblueanthocyaninbiosynthesis,
.132:1652–1663
FukuiY,TanakaY,KusumiT,IwashitaT&NomotoK(2003)
Arationalefortheshiftincolourtowardsblueintransgenic
carnationflowerxpressingtheflavonoid3¢,5¢-hydroxyla
hemistry63:15–23
GalunE&BreimanA(1997)al
CollegePress,London,UK
GanS&AmasinoRM(1995)Inhibitionofleafnescenceby
e270:1986–
1988
GelvinSB(2003)Improvingplantgeneticengineeringby
Biotechnol.21:95–98
GoodwinSM,KolosovaN,KishCM,WoodKV,DudarevaN
&JenksMA(2003)Cuticlecharacterizationandvolatile
hysiol.117:
435–443
GotoT&KondoT(1991)Structureandmolecularstackingof
anthocyanins-fl.
Engl.30:17–33
GutermanI,ShalitM,MendaN,PiestunD,Dafny-YelinM,
SchalevG,BarE,DavydovO,OvadisM,EmanuelM,Wang
J,AdamZ,PicherskyE,LewinsohnE,ZamirDVainsteinA
&WeissD(2002)Roscent;genomicsapproachtodiscover
novelflell14:2325–2338
GuttersonN(1995)Anthocyaninbiosyntheticgenesandtheir
applicationtoflowercolourmodificationthroughn
.30:964–966
HarborneJB(1962)enceofazalein
andrelatedpigmentsinflowersofPlumbagoandRhododen-
s.96:171–178
HarborneJB(1967)Comparativebiochemistryoftheflavo-
ationsbetweenchemistry,pollenmorphol-
ogyandsystematicsinthefamilyPlumbaginaceae.
Phytochemistry6:1415–1428
HannG&WrightMS(1999)Recentadvancesinthe
PlantSci.4:226–231
HeathMC(2000)Non-hostresistanceandnon-specificplant
iol.3:315–319
HiroY,AidaR&ShibataM(2002)Agrobacteriumtumefac-
iens–
Biotechnol.19:377–382
HoltonTA,BruglieraF,LesterD,TanakaY,HylandCD,
MentingJGT,LuC-Y,FarcyE,StevensonTW&Cornish
EC(1993a)CloningandexpressionofcytochromeP450
genescontrollingfl366:276–279
HoltonTA,BruglieraF&TanakaY(1993b)Cloningand
expressionoffl.
4:1003–1010
HondaT&SaitoN(2002)Recentprogressinthechemistryof
polyacylatedanthocyaninsasfl-
cycles56:633–692
HoshiY,KondoM&KobayashiH(2003a)Transformationof
Begoniamperfl.
.72:373
HoshiY,KondoM,MoriS,AdachiY,NakanoM&Kobayashi
H(2003b)ProductionoftransgeniclilyplantsbyAgrobacte-
rium–ellRep.6:359–364
HoshinoY,SatoH,MurataN&ShinodaK(2001)Agrobac-
teriumtumefaciens–mediatedtransformationofAlstromeria.
.70:291
IbrahimRK&MuzacI(2000)Themethyltransferagene
superfamily::IbrahimR,
VarinL,deLucaV&RomeoJT(eds)RecentAdvancesof
ionofMetabolicPathways,Vol.34
(pp.349–385).ElvierScience,Amsterdam
IidaS,HoshinoA,Johzuka-HisatomiY,HabuY&InagakiY
(1999)Floriculturaltraitsandtransposableelementsinthe
.
Sci.870:265–274
IshidaM,OgataJ,YoshidaH,ItohY&OzekiY(2003)
IsolationofacDNAforthechalcone2¢-glucosyltransfera
geneanditxpressionprofileincarnationflnd
CellPhysiol.44:s158
ItohY,HigetaD,SuzukiA,YoshidaH&OzekiY(2002)
ExcisionoftransposableelementsfromthechalconeIsom-
eraanddihydroflavonol4-reductagenesmaycontribute
tothevariegationoftheyellow-floweredcarnation(Dianthus
caryophyllus).PlantCellPhysiol.43:578–585
IwataH(2003)Modernperpetualrosweregeneratedby
:MorningGloryWorkshop,Okazaki
21
JamesC(2002)GlobalStatusofCommercializedTransgenic
Crops:,Ithaca
JezJM,BowmanME,DixonRA&NoelJP(2000)Structure
andmechanismoftheevolutionaryuniqueenzymechalcone
.7:786–791
JorgennRA,QueQ&NapoliCA(2002)Maternally-
controlledovuleabortionresultsfromcosuppressionof
dihydroflavonol-4-reductaorflavonoid-3¢,5¢-hydroxyla
iol.29:1501–1506
JoungY,RohM,KamoK&SongJ(2001)Agrobacterium-
ell
Rep.20:289–295
KannoY,NodaN,KazumaK,TsugawaH&SuzukiM(2003)
TransformationofLobeliaerinus.(inJapane).In:The
ellMol.
Biol.(p.121).Kagawa
KatoN,ShikanaiY,KannoY&SuzukiM(2001)Flower
colourmodificationoflisianthusviaAgrobacterium(in
Japane)..70s2:436
KimCK,ChungJD,ParkSH,BurrellAM,KamoKK&Byrne
DH(2004)Agrobacteriumtumefaciens-mediatedtransforma-
tionofRosahybridausingthegreenfluorescentprotein
(GFP)..78:107–111
KishimotoS,AidaR&ShibataM(2002)Agrobacterium
tumefaciens-mediatedtransformationofElatiorBegonia
(BegoniaxhiemalisFotsch).PlantSci.162:697–703
KitadaC,GongZ,TanakaY,YamazakiM&SaitoK(2001)
DifferentialexpressionoftwocytochromeP450sinvolvedin
thebiosynthesisofflavonesandanthocyaninsinchemo-
ellPhysiol.42:
1338–1344
KiyokawaS,KikuchiY,KamadaH&HaradaH(1996)
GenetictransformationofBegoniatuberhybridabyRirol
ellRep.15:606–609
KnudnJT,TollstenL&GunnarBergstromL(1993)Floral
scents-Achecklistofvolatilecompoundsisolatedbyhead-
hemistry33:253–280
KolosovaN,GorensteinN,KishCM&DudarevaN(2001)
Regulationofcircadianmethylbenzoateemissionindiur-
ell13:2333–
2347
KushikawaS,HoshinoY&MiiM(2001)Agrobacterium-
mediatedtransformationofSaintpauliaionanthaWendl.
PlantSci.161:953–960
LavidN,WangJ,ShalitM,BarE,BeuerleT,MendsN,Shafir
S,ZamirD,AdamZ,VainsteinA,WeissD,PisheskyE&
LewinsohnE(2002)O-methyltransferasinvolvedinthe
biosynthesisofvolatilephenolicderivativesinropetals.
PlantPhysiol.2002:1899–1907
LavyM,ZukerA,LewinsohnE,LarkovO,RavidU,Vainstein
A&WeissD(2002)Linaloolandlinalooloxideproduction
intransgeniccarnationflowerxpressingtheClarkiabreweri
.9:103–111
LeeS-Y,ChoiP-S,ChungH-J,InD-S,ChoiD-W&LiuJR
(2003)Comparisonofadventitiousshootformationin
petioleexplantculturesof20cultivarsofCatharanthus
iotechnol.5:59–61
LewinsohnE,SchalechetF,WilkinsonJ,MatsuiK,TadmorY,
NamK-H,AmarO,LastochkinE,LarkovO,RavidU,
HiattW,GapsteinS&PicherskyE(2001)Enhancedlevelsof
thearomaandflavorcompoundS-linaloolbymetabolic
Physiol.127:1256–1265
LiX,GasicK,CammueB,BroekaertW&KorbanSS(2003)
Transgenicrolinesharboringanantimicrobialprotein
gene,Ace-AMP1,demonstrateenhancedresistancetopow-
derymildew(Sphaerothecapannosa)Planta24September
Online
LiuD,GalliM,CrawfordNM(2001)Engineeringvariegated
floralpatternsintobaccoplantsusingtheArabidopsis
ellPhysiol.42:419–423
LiauC-H,YouS-J,PrasadV,HsiaoH-H,LuJ-C,YangN-S,
ChanM-T(2003)Agrobacteriumtumefaciens-mediatedtrans-
ellRep.21:993–
998
LloydAM,WalbotV&DavisRW(1992)Arabidopsisand
Nicotianaanthocyaninproductionactivatedbymaizeregu-
e258:1773–1775
LuckerJ,BouwmeestarHJ,SchwabW,BlaasJ,vanderPlas
LH&VerhoevenHA(2001)ExpressionofClarkiaS-linalool
synthaintransgenicpetuniaplantsresultsintheaccumu-
.27:315–324
LuckerJ,ElTamerMK,SchwabW,VerstappenFWA,vander
PlasLHW,BouwmeesterHJ&VerhoevenHA(2002)
Monoterpenebiosynthesisinlemon(Citruslimon):cDNA
isolationandfunctionalanalysisoffourmonoterpene
em.269:3160–3171
MarchantR(1998)Expressionofachitinatransgeneinro
(RosahybridaL.)reducesdevelopmentofblackspotdia
(DiplocarponrosaeWolf)..4:187–194
MartensS&ForkmannG(1999)Cloningandexpressionof
fl.20:611–
618
MartensS,ForkmannG,BritschL,WellmannF,MaternU&
LukacinR(2003a)Divergentevolutionofflavonoid
Lett.544:93–98
MartensS,KnottJ,SeitzC,JanvariL,YuS-N&ForkmannG
(2003b)Impactofbiochemicalpre-studiesonspecificmeta-
bolicengineeringstrategiesofflavonoidbisynthesisinplant
.J.14:227–235
MartinGB,BogdmoreAJ&SessaG(2003)Understandingthe
iol.
54:23–61
MenS,MingX&WeiC(2003)Agrobacterium-mediated
ell
.75:63–71
MercuriA,DeBenedettiL,BurchiG&SchivaT(2000)
Agrobacterium-mediatedtransformationofAfricanviolet.
.60:39–46
MeyerP,HeidemannI,ForkmannG&SaedlerH(1987)A
newpetuniaflowercolourgeneratedbytransformationofa
330:677–678
MithilaJ,MurchSJ,KrishnaRajS&SaxenaPK(2001)Recent
.67:1–9
MizutaniM,TsudaS,SuzukiK,NakamuraN,FukuiY,
KusumiT&TanakaY(2003)Evaluationofposttranscrip-
tionalgenesilencingmethodsusingflowercolorasthe
ellPhysiol.44:s122
MolJ,CornishE,MasonJ&KoesR(1999)Novelcoloured
flhnol.10:198–201
22
MolJ,GrotewoldE&KoesR(1998)Howgenepaintflowers
PlantSci.3:212–217
NakayamaT,Yonekura-SakakibaraK,SatoT,KikuchiS,
FukuiY,Fukuchi-MizutaniM,,Tanaka
Y,KusumiT&NishinoT(2000)Aureusidinsyntha:a
polyphenoloxidahomologresponsibleforflowercolora-
e290:1163–1166
NielnK,DerolesSC,MarkhamKR,BradleyMJ,Podivinsky
E&MansonD(2001)Antinflavonolsynthaalters
copigmentationandfl.9:
217–229
NishiharaM,NakatsukaT,MishibaK,KikuchiA&
YamamuraS(2003)Flowercolormodificationbysuppres-
ellPhysiol.
44:s159
NodaN,KatoN,KogawaK,KazumaK&SuzukiM(2004)
Cloningandcharacterizationofthegeneencodinganthocy-
anin3¢,5¢-O-glucosyltransferainvolvedinternatinbiosyn-
thesisfrombluepetalsofbutterflypea(Clitoriaternatea).
PlantCellPhysiol.45:s132
NontaswatsriC,FukaiS&Goi(2004)Revidcocultivation
conditionsproduceeffectiveAgrobacterium-mediatedgenetic
transformationofcarnation(DianthuscaryophyllusL.)Plant
Sci.166:59–68
OkinakaY,ShimadaY,Nakano-ShimadaR,OhbayashiM,
KiyokawaS&KikuchiY(2003)Selectiveaccumulationof
delphinidinderivativesintobaccousingaputativeflavonoid
3¢,5¢-.
m.67:161–165
Okuhara,H,IshiguroK,HiroC,GaoM,TogamiJ,
NakamuraN,OnoE,OchiaiM,FukuiY,YanaguchiM&
TanakaY(2004)Molecularcloningandfunctionalexpres-
sionofteterahydroxychalcone2¢-glucosyltransferagenes.
PlantCellPhysiol.45:s133
OlszewskiN,SunT-P&GublerF(2002)Gibberellinsignaling:
biosynthesis,catabolism,ell
S61–S80
ParkS-U&FacchiniPJ(2000)Agrobacterium-mediatedgenetic
transformationofCaliforniapoppy,Eschscholziacalifornica
Cham.,ellRep.19:1006–
1012
PayneT&LloydA(1998)Transformationandregenerationof
ell
Rep.18:308–311
PunjaZK(2001)Geneticengineeringofplantstoenhance
resistancetofungalpathogens-areviewofprogressand
athol.23:216–235
QuattrochioF,WingJF,LeppenHTC,MolJNM&KoesR
(1993)Regulatorygenescontrollinganthocyaninpigmenta-
tionarefunctionallyconrvedamongplantspeciesandhave
ell5:1497–1512
SavinKW,BaudinetteSC,GrahamMW,MichaelMZ,Nugent
GD,LuC,ChandlerSF&CornishEC(1995)Antin
.
Sci.30:970–972
ScallietG,JournotN,JullienS,BaudinoS,MagnardJ-L,
ChanneliereS,VergneP,DumasC,BendahmaneM,Cock
JM&HugueneyP(2002)Biosynthesisofthemajorscent
components3,5-dimethoxytolueneand1,3,5-trimethoxyben-
tt.2002:
113–118
SchadeF,LeggeRL&ThompsonJE(2001)Fragrance
volatilesofdevelopingandnesingcarnationfl-
tochemistry56:703–710
ShalitM,GutermanI,VolpinH,BarE,TamariT,MendaN,
AdamZ,ZamirD,VainsteinA,WeissD,PicherskyE&
LewinsohnE(2003)Volatileesterformationinros.
IdentificationofanacetylcoenzymeA:geraniol/citronellol
hysiol131:
1868–1876
ShawJ-F,ChenH-H,TsaiM-F,KuoC-I&HuangL-C(2002)
ExtendedflowerlongevityofPetuniahybridaplantstrans-
formedwithboers,amutatedERSgeneofBrassicaoleracea.
.9:211–216
ShimadaY,Nakano-ShimadaR,OhbayashiM,OkinakaY,
KiyokawaS&KikuchiY(1999)ExpressionofchimericP450
genencodingflavonoid-3¢,5¢-hydroxylaintrans-
tt.461:241–
245
ShinoyamaH,KazumaT,KomanoM,NomuraY&Tsuchiya
T(2002)AnefficienttransformationsysteminChrysanthe-
mum[DendranthemaXgrandiorum(Ramat.)Kitamura]
Biotechnol.19:335–343
SpringobK,NakajimaJ,YamazakiM&SaitoK(2003)
Recentadvancesinthebiosynthesisandaccumulationof
.20:288–303
StaffordHA(1990)ss,Florida
StrackD&WrayV(1993):HarborneJB
(ed)TheFlavonoids–AdvancesinRearchSince1986(pp.
1–22).ChapmanandHall,London
SuzukiH,NakayamaT,Yonekura-SakakibaraK,FukuiY,
NakamuraN,NakaoM,TanakaY,YamaguchiMA,
KusumiT&NishinoT(2001)MalonylCoA:anthocyanidin
5-O-glucoside-600-O-malonyltransferagenefromscarlet
sage(Salviasplendens)flpurification,gene
cloning,expression,.276:
49013–49019
SuzukiH,NakayamaT,Yonekura-SakakibaraK,FukuiY,
NakamuraN,YamaguchiMA,Tanaka,Y,KusumiT&
NishinoT(2002)cDNAcloning,heterologouxpressions,
andfunctionalcharacterizationofmalonylCoA:anthocyani-
din3-O-glucoside-600-O-malonyltransferafromdahliaflow-
hysiol.130:2142–2151
SuzukiK,ZueH,TanakaY,FukuiY,Fukuchi-MizutaniM,
MurakamiY,KatsumotoY,TsudaS&KusumiT(2000)
FlowercolormodificationsofToreniahybridabycosup-
.6:
239–246
SuzukiS,SupaibulwatanaK,MiiM&NakanoM(2001)
ProductionoftransgenicplantsoftheLiliaceousornamental
alis(Leighton)via
Agrobacterium-mediatedtransformationofembryogenic
ci.161:89–97
TamuraM,TogamiJ,IshiguroK,NakamuraN,Katsumoto
Y,SuzukiK,KusumiT&TanakaY(2003)Regenerationof
transformedverbena(Verbenaxhybrida)byAgrobacterium
ellRep.21:459–466
TanakaY&MasonJ(2003)Manipulationofflowercolourby
:SinghRP&JaiwalPK(eds)Plant
GeneticEngineering(pp.361-385).SCITechPublishing,
Houston
23
TanakaY,TsudaS&KusumiT(1998)Metabolicengineering
tomodifyflellPhysiol39:1119–1126
TanakaY,TsudaS&KusumiT(1999)Applicationof
recombinantDNAtofl:ChopraVL,Malik
VS&BhatSR(eds)AppliedPlantBiotechnology(pp.177–
231).Oxford&IBH,NewDelhi
TrickHN&FinerJJ(1997)SAAT:sonication-assisted
enicRes.6:
329–336
TsugawaH,ShikauciY,KannoY&SuzukiM(2001)
.
.70:434
TsugawaH,KagamiT&SuzukiM(2004)High-frequency
bacterium-med-
ellRep.22:759–764
UeyamaY,SuzukiK,Fukuchi-MizutaniM,FukuiY,Miya-
zakiK,OhkawaH,KusumiT&TanakaY(2002)Molecular
andbiochemicalcharacterizationoftoreniaflavonoid3¢-
hydroxylaandflavonesynthaIIandmodificationof
flowercolorbymodulatingtheexpressionofthegenes.
PlantSci.163:253–263
vanderKrolAR,LentingPE,VeenstraJ,vanderMeerIM,
KoesRE,&StuitjeAR(1988)An
antinchalconesynthageneintransgenicplantsinhibits
fl333:866–869
vanderSalmTPM,vanderToornCJG,BouwerR,Hanisch
tenCateCH&DonsHJM(1997)ProductionofROLgene
racterization
.3:39–47
VerdonkJC,deVosCHR,VerhoevenHA,HaringHA,van
TunenAJ&SchuurinkRC(2003)Regulationoffloralscent
-
chemistry62:997–1008
WangM-B&WaterhouPM(2001)Applicationofgene
iol.5:146–150
WilkinsonJQ,LenahanMB,ClarkDG,BleeckerAB,Chang
C,MeyerowitzEM&KleeHJ(1997)Adominantmutant
receptorfromArabidopsisconferthyleneinnsitivityin
hnol.15:444–447
WinefieldC,LewisD,ArathoonS&DerolesS(1999)
AlterationofPetuniaplantfromthroughtheintroduction
.
5:543–551
Winkel-ShirleyB(2002)Biosynthesisofflavonoidsandeffects
iol.5:218–223
YamaguchiT,Fukada-TanakaS,InagakiY,SaitoN,Yonek-
ura-SakakibaraK,TanakaY,KusumiT&IidaS(2001)
GenencodingthevacuolarNa+/H+exchangerand
flellPhysiol.42:451–461
Yonekura-SakakibaraK,TanakaY,Fukuchi-MizutaniM,
FujiwaraH,FukuiY,AshikariT,MurakamiY,Yamaguchi
M&KusumiT(2000)Molecularandbiochemicalcharac-
terizationofhydroxycinnamoyl-CoA:anthocyanin3-O-glu-
coside-600-O-hydroxycinnamoyltransferafromPerilla
ellPhysiol.132:1652–1663
YoshidaK,KondoT,OkazakiY&KatouK(1995)Cauof
373:291
ZukerA,AhroniA,TzfiraT,Ben-MeirH&VainsteinA(1999)
WoundingbybombardmentyieldshighlyefficientAgrobac-
terium-mediatedtransformationofcarnation(Dianthuscar-
yophyllusL.)..5:367–375
ZukerA,TzfiraT,Ben-meirH,OvadisM,ShklarmanE,
ItzhakiH,ForkmannG,MartensS,Nata-SharirI,WeissD
&VainsteinA(2002)Modificationofflowercolourand
fragrancebyantinsuppressionoftheflavanone3-
.9:33–41
24
本文发布于:2022-11-23 14:53:14,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/6375.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |