第61卷,2019年第5期
.61,2019,No.5
ChineJournalofTurbomachinery
RapidAerodynamicDesignofProp-rotorBladewith
Optimization
YincheangNgHai-xinChen
(SchoolofAerospaceEngineering,TsinghuaUniversity,China,)
Abstract:Aeroddoffocusona
designcondition,prop-rotorarerent
work,tofurtherimproveperformanceofprop-rotorundereachoperatingcondition,theconceptofvariable-pitchprop-
r,acompromisingaerodynamicdesignofprop-rotorisinevitable,duetodiscrepancy
uently,s
whichhassignificantlyinfluencedonae
avoidexpensivelycomputationalcost,twotheorieshasbeenimplementedandvalidatedwhileitabletoprovidea
ally,veraldesignedindividualswithindifferent
uentlyacalculationofaerodynamiccharacteristicwithhigh-
fidelitysolverhasbeenconductedasvalidationfordesignedindividual.
Keywords:AerodynamicDesign,Optimization,Prop-Rotor,PreliminaryDesign,BEMT,VortexTheory
DOI:10.16492/.2019.05.0004
Nomenclature
PL
hov
FM
DL
η
p
P
0
T
κ
P
∞
Hoveringpowerloading
Figureofmerit
Diskload
Propulsiveefficiency
Profilelosscoefficient
Statictemperature
Factorofinducedloss
Environmentalpressure
0Introduction
Conceptoftiltrotoraircrafthascombinedcapabilityof
pulsivesystemre-
liesonapairofconvertiblerotor,duetoadvantageofaero-
dynamiccharacteristicsofrotor,itspropulsivesystemisable
toprovidecapabilityofhoveringinreasonablehighefficien-
rastwiththeconventionalhelicopter,tiltrotorair-
craftareabletocruiinhigh-speedwithinhighpropulsive
ore,itisanattractiveapproachtoachieve
bothverticalandshorttake-off/landing(STOL).However,a
significantchallengeforconvertiblerotoraircraftwhichisto
designaprop-rotorwithgoodperformanceundereachoper-
rast,helicopterrotorandpropeller
hasonlyoperatedoptimallyataspecifiedconditionwithnar-
operatesunderoff-designcondi-
tion,
anaerodynamicanalysisofprop-rotor,inducedlossdomi-
natesthehoveringperformancewhileprofilelossplaysa
ult,prop-rotorre-
T
∞
V
∞
C
T
C
p
C
i
r
ˉ
ρ
Vnd
Environmentaltemperature
Cruivelocity
Thrustcoefficient
Powercoefficient
Parameterofmultinomialequation
Dimensionlessradialposition
Density
Advancedratio
··19
ChineJournalofTurbomachinery
questsalargediskareaandsoliditytoattainagoodperfor-
manceinhoveringoperationwhileprop-rotorrequestsalow-
erdiskareatoreduceprofilelossandemployedairfoilwith
highlift-dragratiotoprovidedemandingthrustaswellasre-
eofthediscrep-
ancyofdesignphilosophybetweenhoveringandpropelling
condition,acompromisingdesignhastobeconducted.
1RelatedWork
InthedesignprocedureofXV-15,McVeighetal(1983)
[1]firstlydesignanadvancedcompositereplacementblade
foreachcrucialflightconditionbycompromidchordand
twistdistributionofbladestoachieveanacceptablehovering
uently,Paisleyetal
(1987)[2]investigatedinaderivativeoftheV-22Ospre,who
hasimplementedanaerodynamicoptimizationfordesignof
bladeshapetoincreaflyingspeedunderoperationoffor-
wardflyunderconsiderationtomaintainagoodpropelling
atively,Liuetal(1990)[3]suggesteda
non-linearprogrammingtechniquesasanapproachforaero-
ultipleoperating
condition,aerodynamicdesignofprop-rotorismuchmore
b-
lemofaerodynamicdesignisformedasamulti-objectiveop-
herunderstandtheproblemof
aerodynamicdesignofprop-rotor,astudyhasbeenconduct-
edandadescriptionofpossibledesignparametersanditsin-
fluenceonaerodynamicperformanceofprop-rotorhave
beengivenbyLeishmanetal(2011)[4].Modernapproachto
conductamulti-objectiveoptimizationarecommonlyem-
ployagradient-bastedalgorithmwithlinearsuperpositionof
multi-objectivewithinweightcoefficienttotransforma
multi-objectionoptimizationtosingleobjectiveoptimizing
r,gradient-badalgorithmcommonlyre-
-
lethisproblem,atypeofstochasticoptimizingmethodsuch
ketal(2013)
[5]hasimplementedamulti-objectiveoptimizationbyadopt-
edgeneticalgorithmtofurtherimprovehoveringandpropul-
siveperformancebyoptimizedtwistandchorddistribution
tion,multi-objectiveoptimizingapproach
willproducetheiroptimalresultasPareto-optimalsolution.
Itwillallowdesignertolectandcompareeachcompro-
middesignfromfrontier-edge.
2NumericalApproach
2.1Geneticalgorithm
Convertiblerotoraircrafthasawiderangeofoperating
hoperatingstate,whichimpoaverydif-
ferentinflowconditionfortheprop-rotoraswellasblade
eveoptimalperformanceoneachstates,
whichrequestadifferentaerodynamicdesignfortheblade.
Therefore,acompromisingdesignhastobeconductedto
achievelowestrequirementofaerodynamicloadingtothe
aircraftaswellasmaximumitfficiencyateachoperating
signproblemleadstoamulti-objectiveoptimi-
achobjectiveareconflicted,solution
prentwork,FastandElitistMulti-ObjectiveGeneticAlgo-
rithm(NSGA-II)whichpropodbyDebetal(2002)[6]is
employed.
2.2Aerodynamicsolver
Toavoidexpensivelycomputationalcostofdirectly
solvetheRANSequationintheoptimizingprocess,Blade
ElementMomentumTheory(BEMT)andClassicalVortex
Theoryareimplementedforprovidingaerodynamiccharac-
teristicsofprop-rotorandacomparisonofaccuracyarecon-
Tareatheorywhicharecombinationof
oryconsiders
prop-rotorwhichconsistofveralbladeelementandits
aerodynamiccharacteristicsaredeterminedbyfluidflow
-
tion,tipeffectofprop-rotorisintroducedwithPrantalloss
functionandinducedvelocitytoeachbladeelementwhich
therhand,the
VortexTheoryassumetherotorconsistofadiskandawake
ingtoBiot-SavartLaw,every
vortexfilamentwillinduceavelocityandeventuallyimple-
mentanintegrationtovortexfilamentwithBiot-SavartLaw.
-
fore,theaerodynamiccharacteristicsofprop-rotorcanbecal-
culated.
3ChallengesandPerformanceMetric
Thechallengeofaerodynamicdesignforconvertible
prop-rotorwhichistomaintainagoodhoveringperfor-
manceaswellaspropulsiveperformanceoverawiderange
ore,amulti-objectiveoptimiza-
herunderstandthedesigning
philosophyofprop-rotor,aninvestigationoffactorswhich
willsignificantlyinfluencetheaerodynamicperformance
sively,thofactorscanderiveas
1)Solidity
2)TwistDistribution
3)ChordDistribution
4)Airfoil
5)RotorTipSpeed
Accordingtothedefinitionofsoliditywhichreprent
irectly
ndChord
distributionhasaffectedprofilelossandinducedlossrespec-
tivelyandanairfoilwithhighlift-drag-ratioaredemanded.
Toavoidanadditionalreductionofrotorperformancewhich
inducedbycompressibleeffect,thetipspeedofrotorhasto
work,afurtherimprovementofbothperformancesunder
hoveringandpropellingconditionhasbeenimplementedby
geneticalgorithm.
3.1Hoveringmetric
Regradingtohoveringoperatingstate,PowerLoading
andFigureofMeritarecommonlyadoptedasobjectivein
rastbetweenPowerloading
andFigureofMerit,PowerLoadingisanabsolutemetricof
aerodynamicefficiencywhichstraightforwardmeasure
RapidAerodynamicDesignofProp-rotorBladewithOptimization
··20
第61卷,2019年第5期
.61,2019,No.5
ChineJournalofTurbomachinery
thrust-power-ratioofrotorwhileFigureofMeritarethemet-
ricwhichmeasurebetweenidealandactualpowerrequire-
er,PowerLoadingcanbederivedasaform
whichconsistofFigureofMeritanddiskloadasfollowing:
PL
hov=
2ρFM
DL
(1)
Fromtheequation,toattainagoodhoveringperfor-
mance,agoodFigureofMeritandlowdiskloadwasre-
therhand,Leishmanetal(2011)[4]indicat-
edthatarotorwithingreathoveringperformancearenot
ore,
anabsolutemetricimployedasobjectivefunctionforopti-
mizationinthiswork.
3.2Propellingmetric
Astraightforwardapproachtomeasurepropulsiveeffi-
ciencyisratioofshaftpoweroverpropellingpower,itcan
simplyderiveasfollowing:
η
p=PropellingPower
PropellingPower+InducedLoss+ProfileLoss
(2)
Subquently,shaftpowercanbedividedasPower
whichudforpropelling,resistinducedlossandprofile
ropelleroperateunderhighspeedconditionthe
propulsiveefficiencycanderiveasfollowingform:
η
p=
1
1+κDL2ρV2
∞
+P
0
TV
∞
(3)
Fromtheequation,powerudforresistinginduced
lossarediminishingwithinfactorof1
V
2
∞
.Therefore,profile
herimprove
propulsiveperformance,profilelosswillbetheobjectto
atively,amorepowerfulmetrictomeasureair-
craftpropulsiveperformancewhichispropulsivepowerload-
iderspropellerasaprocedurewhichisinsidethe
loopofaircraftdesignandgenerallyconsidertheentireair-
craftaerodynamicperformancewhileaircraftarecruising.
4ValidationofLow-fidelitysolver
Inthispartofwork,atheoreticalapproachhasbeen
studiedforavoidingexpensivelycomputationalcostbydi-
-fidelitymethodisimple-
mentedforpredictingaerodynamicperformanceofprop-ro-
ork,VortexTheo-
ryandBladeElementMomentumTheory(BEMT)areimple-
hervalidatetheaccuracyof
thelow-fidelitymethods,avalidationwhichcomparebe-
tweencalculationoflow-fidelitymethodandexperimental
alidation,theexperimentaldata
arechonfromEdwinetal(1938)[7]andtheexperimental
datatwith2blades-RAF6-airfoilpropellerarechon.
Thecomparingresulthaveshowedbelow:
Inthisvalidation,wewerecomparingthrustandpower
thefigure,itindicatedthatVortexTheoryandBEMThas
showedapromisingpredictionofthrustcoefficientandboth
ofthetheoryhasaworpredictioninpowercoefficient,
nd,wedecid-
edtoemployBEMTassolverforpredictingaerodynamic
performanceintheoptimizingprocess.
5Validationofhigh-fidelitysolver
Inthisction,anumericalsolverwhichhasbeenvali-
-fidelity
solverwhichisCFD++areudforvalidationbycalculated
thecaofCaradonnaTungrotoranditscomputationalre-
erimental
nnaetal(1981)[8].
Thisarticlehascontainedvariousofdatatwhichhasbeen
conductedwithindifferentexperimentaltupandcondition.
Tovalidatethesolver,adatatwhichisCaradonnarotorop-
erateinhoveringconditionwithin1250RPMrotatingspeed
ailofthege-
ometryhasshowedbelow:
Inthisvalidation,threetofstructuralgirdwithindif-
ferentnumberofmeshelementhasbeengeneratedforthe
hreetofmeshhassharedasametopol-
ogyandfivetypeofboundaryconditionhasbeentforin-
put,output,sideboundary,
detailoftheboundarytuphasshowedas
Fig.2Comparisonofpowercoefficientalongadvancedratio
Fig.1Comparisonofthrustcoefficientalongadvancedratio
Tab.1Summaryofgeometricalandflowcondition
Geometry&OperatingCondition
ChordLength/m
AspectRatio
CollectivePitch/deg
TipMach
RPM
P
∞/Pa
T
∞/K
C
t
0.1905
6
8
0.4390
1250
103027
286.75
0.00459
··21
ChineJournalofTurbomachinery
Inthecalculation,Inflowboundaryconditionaregiven
astotalpressureandtotaltemperatureboundarycondition
whileoutflowboundaryandsideboundaryaregivenasstat-
ueofthetotalpressure,
staticpressure,totaltemperatureandstatictemperatureare
givenasambientpressureandtemperaturewhichis103027
ore,
theflowisinducedbytheworkwhichwasproducedbythe
rotor,partoftheworkisudtoproducethrustwhiletheoth-
idflowthroughthecalculation
domainwithininflowandsideboundaryandleavethedo-
ical-
ly,thesinglerotatingframewithinrotatingspeed1250RPM
areemployedandtheRANSequationwithSSTturbulent
modelwithinwallfunctionhasbeensolvedinthecalcula-
tion,thesteadyRANSequationhasbeendiscret-
edwithcondorderTVDschemewithminmoidlimiter.
Threetofmeshwith3,6and12millionofgridelement
er,thrustcoefficient
andpressuredistributionindifferentradialpositionofblade
hasbeencomparedfordeterminingapromisingelement
numberofmeshforfurthercalculationunderconsideration
ofbothcomputationalcostandaccuracy.
Thegraphwhichshowedabovehavecomparedthecap-
tureofpressuredistributionatradialpositionwithin50%,
60%,89%and90%with3,6,and12millionofmeshele-
irstgraph,itshowedthreemeshhaslittlediffer-
enceinpredictionofpressuredistributionwhiletheother
threeofgraphsindicatedthatthemeshwithin6and12mil-
lionofelementareabletoaccuratelycapturethepeakof
pressuredistributionwhilethenumericaldissipationarede-
creasingwhenthenumberofmeshelementareincread.
Bycontrastwiththrustcoefficient,thedifferencebetween12
lusion,themeshwith-
in6millionofelementareappropriateforcomputationun-
dertheconsiderationofbothcomputationalcostandaccura-
cy.
Fig.3Experimentalt-upofCaradonnaTungrotor
Fig.4Computationaldomainandboundary
Fig.6OgridforCaradonnarotor
Fig.5SurfacemeshofCaradonnarotor
BoundarySurface
Inflow,SideBoundary
Outflow,SideBoundary
PeriodicBoundary
Blade
BoundaryCondition
TotalPressure&TotalTemperature
StaticPressure&StaticTemperature
PeriodicBoundaryCondition
ViscousSurface
Tab.2Boundaryconditionforcaradonnatungrotor
Fig.7Independenceanalysisofgrid
RapidAerodynamicDesignofProp-rotorBladewithOptimization
··22
第61卷,2019年第5期
.61,2019,No.5
ChineJournalofTurbomachinery
6ProcedureofOptimization
Inthisction,apairofprop-rotorhasbeendemanded
forMAVtoachievecapabilityofShortTake-OffandLand-
ing(STOL).Therequirementtotheprop-rotorhasbeen
madeandobjectiveofoptimizationwhichistoimprovehov-
eringpowerloadingandpropulsiveefficiencyasmuchas
ailofrequirementhasshowedas
Optimizingvariableandoriginalrotor
Duringoptimizingprocess,aprop-rotorwhichisorigi-
nallydesignforhoveringstatehasbeenemployedasoriginal
ofblades,chorddistribution,twistdistribution,
hoveringandpropellingrotatingspeedinRPMareconsider
asdesignvariablewhichhavesignificantlyinfluencedpro-
pulsiveandhoveringefficiencywithinthofactorswhich
theprocedureof
optimization,amultinomialequationisudtoparameterize
chordandtwistdistributionas
C()r=C
0+C1
()r
ˉ
-0.75+C
2
()r
ˉ
-0.75
2+C3
()r
ˉ
-0.75
3
(4)
especially
C
iaredesignvariableand
r
ˉ
isdimension-
tion,tofurtherimprovebothper-
formanceateachstate,avariablepitchanglehasbeenintro-
ducedtoprop-rotorforfurtheradaptingdifferenceofinflow
odynam-
iccharacteristicandgeometryoforiginalprop-rotorhaspro-
videdasbelow:
Inthispartofwork,aproblemofaerodynamicoptimi-
zationwithmulti-objectivehasbeensolvedwithNSGA-II
geneticalgorithmandBEMThasbeenemployedasasolver
absolutemetricofperformancewhichishoveringpower
loadingandpropulsiveefficiencyhasbeenemployedasob-
optimization,therotorwhichshowedabovehavebeenem-
ployedasoriginaldesign,11variablesareinvolvedintheop-
Fig.8Pressurecoefficientdistributionatradialr/R=0.5,0.8,0.89,0.9
Requirement
HoveringCondition
BladeNumber
Radius
RotatingSpeed
Thrust
PropellingCondition
FlySpeed
VariablePitch
RotatingSpeed
Thrust
3
0.55m≤R≤0.65m
2000≤RPM≤4000
500N≤T≤900N
15m/s
2°≤Pitch≤25°
500≤RPM≤2500
50N≤T≤90N
Tab.3Designrequirementforrapidaerodynamicdesign
Fig.9Originalrotorfortheoptimization
··23
ChineJournalofTurbomachinery
timizingprocessand120individualshasbeentforagener-
ulationofindividu-
i-
cally,theflowgraphoftheoptimizingprocesshasshowed
below:
7Constraint
Thediscrepancybetweenhoveringandpropellingun-
deroperatingstate,whichhaveverydifferentinflowcondi-
tionanditrequiresdifferenttwistdistributionforeveryair-
foilelementtoworkunderangleofbestLift-Drag-ratio.
Therefore,twistdistributionofprop-rotorhastobecompro-
midtoattainagoodperformanceundereachdesignpoint.
Duetodiscrepancyofinflowcondition,rootpartofprop-ro-
torisinevitablyworkwithineitherstallingornegativeangle.
Toavoidnegativethrust,aconstraintoflift-coefficientisin-
troducedwhichconstraineveryairfoilelementtoproduce
positivethrust,thereforefurtherimprovehoveringperfor-
manceaswellasacceleratetheoptimizingprocess.
Ontheotherhand,profilelossdominatespropellingef-
idealforthe
designprocessistorequireallairfoilelementofprop-rotor
r,thisidealwillbe
anextremelystrongconstraintforprop-rotorandeventually
noneofthedesignindividualwillfulfiltheconditionwhile
thediscrepancyofinflowanglebetweenhoveringandpro-
ore,acompromidstrat-
egyistoconstrainmediumandtippartofprop-rotorwhich
produceslargepercentageofthrustoverthetotalthrustto
workwithinhighlift-dragratioandlowertherestrictionat
rootpartofpropellerasillustrateasFig11.
8ResultandDiscussion
Resultofmulti-objectiveoptimization
Aprop-rotorwithreasonablehighhoveringperfor-
mancehasbeenemployedasinitialgeometryandamulti-ob-
jectiveoptimizationwhichconsiderbothhoveringandpro-
pellingperformancewasconductedwithgeneticalgorithm.
Someconstraintsareemployedforeithersatisfyingdesign
objectiveoraccelerateoptimizingprocess.
Bothfigurewhichhaveshowedaboveindicatehover-
ingpowerloadingandpropulsiveefficiencyofeachindividu-
egraphswhich
gure12
and13,itindicatesthathoveringperformancearesacrificed
whilethepropellingperformanceareimprovingintheopti-
strateachobjectiveunderhovering
nd,acollec-
tionofindividualwhichcontainallofqualifiedindividual
vidualwhicharelocatedataverage
levelofbothconvergedobjectivesarelectedasdesignindi-
vidualandthedesignindividualhascomparedwithtwoindi-
vidualswhichhavebestperformancerespectivelyunderhov-
eringandpropellingstate.
OriginalPerformance
HoveringCondition
BladeNumber
RotatingSpeed/
RPM
Thrust/
N
ShaftPower/
kW
PowerLoading/(
NkW
)
PropellingCondition
FlySpeed/(m/s)
RotatingSpeed/
RPM
Thrust/
N
ShaftPower/
kW
PropulsiveEfficiency
3
3000
498.54
11.425
43.635
15
3000
260.1
8.099
0.48
Tab.4Performanceoforiginalrotor
Fig.10Procedureofoptimization
fig.11Lift-dragratioconstraint
Fig.12Converginghistoryofpropulsiveefficiency
RapidAerodynamicDesignofProp-rotorBladewithOptimization
··24
第61卷,2019年第5期
.61,2019,No.5
ChineJournalofTurbomachinery
Fromfigure,itindicatedlectedbladeandtheblade
withhighhoveringpowerloadingshareasimilargeometri-
ydiscrepancythetwobladesisthe
rotatingspeedatpropellingcondition,itdirectlyaffectthe
descentofpropulsiveefficiencywithinprofilelosswhen
P
0≈ρπR2
C
p0
V
3
tipasmentionedbyLeishmanetal(2011)[4].
Ontheotherhand,thebladewithbestpropulsiveperfor-
mancehavealargetwistangleontherootpartofrotor
arisonwiththeothertwoblade,thetwistdis-
tributionallowsthebladeworkneartotheangleofbestlift-
ore,itshowedabetter
performancethanotherinthecondition.
Inthiswork,tofurtherimprovepropulsiveefficiencyof
o-
ducedavariable-pitchmechanismtoallowprop-rotorto
switchbetweeneachoperatingconditionbychangeitstotal
efigurewhichshowedabove,itindi-
catesthepropulsiveefficiency,thrustcoefficientandpower
coefficientoflectedbladewhicharecalculatedbyBEMT.
Thelectedbladeisoperatingwithindifferentoperating
conditionwhileitchangeitstotalpitchangletoattainagood
eline
indicatedthebestpropulsiveperformanceandaerodynamic
characteristicsofthelectedbladewhichareabletoattain
underdifferentoperatingconditionwhileitstotalpitchangle
phsshowedthemechanismofvariable
pitchangleareprovidingasufficientwaytoachievethede-
signgoalwhichrequireprop-rotorareabletoattaingoodper-
formanceoverwiderangeofoperatingcondition.
9ValidationWithCFDAnalysis
Inordertovalidatethelectedoptimizedindividual,a
numericalsolverwhicharedirectlysolvetheRANSequa-
tionareintroducedandANSYSICEMCFDareemployed
ithin6millionelementsare
handdetailofthecomputa-
validation,five
typeofboundaryconditionareinvolvedineachoperating
condition,singlerotatingframeandSSTturbulencemodel
adyRANShas
beendiscretizedwithcondorderTVDschemewithmin-
ingtothemesh,anOmeshhasbeengen-
eratearoundtheblade,andthefirstlevelhighofmeshhas
beentas
y
+=1
whiletheReynoldsnumberatbladetip
are7.84
×10
6
inhoveringstateand2.60
×10
6
inpropelling
state,itwillensurefirstlevelhighofmeshalongtheradial
positionarebelowas
y
+=1
.
Inthecalculation,wehaveconductedasimulationin
ically,the
prop-rotorrotatewith3518.03RPManditwillflipwithin
9.735degwhileitchangesitsoperationbetweenhovering
overingstate,theinflow
boundaryisgivenastotalpressureandtotaltemperature
withinambientpressure101325Paandtemperature287K
whileoutflowboundaryconditionisgivenwithstaticpres-
ther
hand,theprop-rotorflyforwardwithin15m/s,inflow,out-
flowandsideboundaryaregivenasstaticpressure101325
Pa,temperature287Kandvelocitycondition.
Inthisca,asinglerotatingframehasbeenemployed
culationhascarriedoutforhovering
hebladerotatewith3518
RPMinhoveringstate,itsMachNumberonbladetip
achieve
M
tip=0.55,while
M
tip=0.19underpropellingcond-
7
whichshowedabovehascomparedthepredictionofthrust
Fig.13ConverginghistoryofHoveringPowerLoading
HoveringCondition
Individual
SelectedBlade
Best
PL
hov
Best
η
p
PropellingCondition
Individual
SelectedBlade
Best
PL
hov
Best
η
p
RPM
3518.03
3519.00
3491.50
RPM
1139.63
1212.50
1026.00
Radius/m
0.5574
Radius/m
0.5574
VariablePitch/(deg)
0
0
0
VariablePitch/(deg)
9.738
9.738
7.944
C
p
0.0533
0.0515
0.0610
C
p
0.0989
0.0952
0.0971
C
T
0.1079
C
T
0.1026
0.0946
0.1045
PL
hov
30.979
NkW
31.881
NkW
27.684
NkW
η
p
0.735
0.716
0.782
Tab.5Comparisonbetweenlectedblade,bladewithbesthoveringandpropulsiveperformance
Fig.14Geometryoflectedblade
··25
ChineJournalofTurbomachinery
Fig.15Chorddistributionofthreelectedblade
Fig.16Twistdistributionofthreelectedblade
Fig.17Propulsiveefficiencyoflectedbladeworkwithindiffer-
entvariablepitchangleindifferentadvancedratio
Fig.18Thrustcoefficientoflectedbladeworkwithindifferent
variablepitchangleindifferentadvancedratio
Fig.19Powercoefficientoflectedbladeworkwithindifferent
variablepitchangleindifferentadvancedratio
HoveringState
BoundarySurface
Inflow,SideBoundary(inflow)
Outflow,SideBoundary(outflow)
PeriodicBoundary
Blade
ConeStone
PropellingState
BoundarySurface
Inflow,Outflow,SideBoundary
PeriodicBoundary
Blade
ConeStone
BoundaryCondition
TotalPressure&TotalTemperature
StaticPressure&StaticTemperature
PeriodicBoundaryCondition
Viscouswall
Inviscidsurface
BoundaryCondition
Pressure,Temperature&Velocity
PeriodicBoundaryCondition
Viscouswall
Inviscidsurface
Tab.6Boundaryconditiont-upforhoveringandcruistate
Fig.20Computationaldomainandrelatedboundary
RapidAerodynamicDesignofProp-rotorBladewithOptimization
··26
第61卷,2019年第5期
.61,2019,No.5
ChineJournalofTurbomachinery
andshaftpowerwhichcalculatedbyBEMTandhighfidelity
etable,inbothoperatingcondi-
tionthepredictionofthrustindicatedaninconsistentresult
betweenlowandhighfidelitysolverwhileshaftpoweris
heless,theinconsistencyofthrust,but
thediscrepancyofcalculationbetweenBEMTandCFDare
aroundandbelow10%.Itisanacceptableresultfortherap-
iddesignofprop-rotorinpreliminarystageofdesign.
10Conclusion
Inthisprentwork,arapidaerodynamicdesignplat-
formwithoptimizingapproachisimplementedforproviding
apreliminarydesignofprop-rotorwhileademandofMAV
mplishthetask,NS-
GA-IIgeneticalgorithmareemployedforsolvingproblem
lementMomentum
TheoryandVortexTheoryarevalidatedandimplemented
foracceleratingtheoptimizingprocesswhilemodernCFD
eevaluationof
BEMTandVortexTheory,whichindicatedthatboththeories
areabletoprovidedpromisingthrustpredictionfortheopti-
mizationandBEMTaremuchmorerobustthanVortextheo-
-
fore,BEMThasbeenlectedasanaerodynamicsolverfor
herunderstandthechallengeofde-
sign,astudyhasbeenconductedandveraldesignparame-
terswhichwillsignificantlyinfluencetheaerodynamicper-
formanceofbladeundereachstatehasbeenintroducedfor
-ob-
jectiveoptimizationhasbeenconductedfordesigningaprop-
rotor,veralconstraintsareintroducedintotheoptimizing
processforeithertofulfiltherequirementofdesignoraccel-
eratetheoptimizingprocessbyintroducedthepriorideal
-rotorwithgoodhoveringperformance
hasbeenudasinitialgeometryandtheoptimizingprocess
showedawellconverginginbothobjectiveswhilethehover-
ingperformancearescarifiedtoattainagoodpropulsiveper-
imizationshowedasignificantimprove-
mentofpropulsiveperformanceanditshowafastconverged
nislectedfromthecollectionof
hervalidatethelecteddesign,a
validatedCFDsolverhasbeenadoptedforthevalidation.
ThevalidationindicatedthattheBEMTareabletoprovidea
consistentpredictioninshaftpowerwhilethepredictionof
thrustisrelativelyinaccuratebutitstillacceptableforprelimi-
narydesign.
References
[1]McVeigh,M.A.,Ronstein,ugh,F.J,(1983).Aerody-
namicDesignoftheXV-15AdvancedCompositeTiltrotorBlade.39th
AnnualForumAmericanHelicopterSocietyAerodynamics,StLouis,
MO,US.
[2]Paisley,D.J,(1987).RotorAerodynamicOptimizationforHigh
SpeedTiltrotors.43thAnnualForumAmericanHelicopterSociety-
Aerodynamics,StLouis,MO,US.
[3]Liu,J.,Paisley,sh,J,(1990).TiltrotorAerodynamic
BladeDesignbyNumericalOptimizationMethod.46thAnnualForu-
mAmericanHelicopterSocietyAerodynamics,Washington,DC,US.
[4]Leishman,en,K.M(2011).ChallengesinTheAerody-
namicOptimizationofHigh-EfficiencyProprotors,JAmericanHeli-
copterSociety,56,(1),pp12.
[5]Leusink,D.,Alfano,D.,Cinnella,inet,J.C(2013).Aerody-
namicrotorbladeoptimizationatEurocopterAnewwayofindustrial
rotorbladedesign,AIAA2013-0779,51thAIAAAerospaceSciences
MeetingincludingtheNewHorizonsForumandAerospaceExposi-
tion,Grapevine,Texas,US.
[6]Deb,K.A(2002).FastandElitistMultiobjectiveGeneticAlgorithm:
NSGA-II,IEEETransactionsonEvolutionaryComputation,6,(2),pp
182-197.
[7]nandDavidBierman(1938).TheAerodynamicChar-
acteristicsofFull-ScalePropellersHaving2,3and4BladesofClark
YandR.A.F.6Airfoil,alAdvisoryCommittee
forAeronautics,Springfield,VA.
[8](1981).ExperimentalandAnalyticalStud-
chnicalMemoran-
dum81232.
HoveringCondition
SelectedBlade
CFD
ErrorAnalysis
PropellingCondition
SelectedBlade
CFD
ErrorAnalysis
Thrust
699.80
810.69
13.68%
Thrust
69.82
63.65
8.84%
ShaftPower
22.589kW
22.689kW
0.44%
ShaftPower
1.424kW
1.433kW
0.63%
Tab.7Comparisonanderroranalysisofthrustandshaftpower
prediction
··27
本文发布于:2022-12-29 22:43:26,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/55860.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |