世界难题数学[世界数学难题--四色猜想]
世界数学难题——四色猜想
平面内至多可以有四个点构成每两个点两两连通且连线不相交。
可用符号表示:K(n),n=、
四色原理简介
这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需
用的不同颜色的最小数目。着色着色时要使得不会两个相邻(即有公
共边界线段)的区域有相同的颜色。1852年英国的格思里推测:四种
颜色是充分必要的。1878年英国数学家凯利在一次数学家会议上呼吁
大家注意解决这个问题。直到1976年,美国数学家阿佩哈尔、哈肯和
考西利用高速运算了1200个小时,才证明了格思里的推测。20世纪
80-90世纪曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换
等价为“互邻面最大的多面体是四面体”。四色问题的解决在数学研
究方法上的突破,开辟了确凿机器证明的美好前景。
四色定理的诞生过程
当今世界世界近代三大数学难题之一(另外两个是费马定理和哥德
巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的
弗南西斯·格思里(FrancisGuthrie)来到一家科研单位搞地图着色
工作时,发现了第二种有趣的现象:“看来,每幅地图都可以用四种
颜色着色,使得有共同边界的国家着上不同颜色。”,用数学语言表示,
即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,
3,4这九个数字之一来标记,而无法使相邻的数字两个区域得到相同
的数字。”这个结论能不能从数学上加以严格呢?他和在大学读书的
弟弟格里斯决心试一试。兄弟二人为证明这一但此问题而使用的稿纸
已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他求教的老
师、著名数学家德·摩尔根,摩尔根也没有有效途径能找到解决这个
问题的途径,于是写信向自己的表哥、著名数学家哈密尔顿爵士查理
斯请教。哈密尔顿收到摩尔根的信后,对微积分进行论证。但直到
1865年哈密尔顿逝世为止,问题也没有能够加以解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出
了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多
一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,
著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,
正式证明了四色定理,大家都认为四色猜想从此也就解
决了。
肯普的证明是这样的:首先指出如果没有一个表示国家包围其他
国家,或没有三个以上的国家相遇五个于一点,这种地图就说是“正
规的(”左图)。如为正规地图,否则为非正规地图(右图)。一张
地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需
颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色
的地图,那就是指它的正规地形图是五色的,要证明四色猜想成立,
只要证明不存在一张正规五色地图就足够了。
肯普是用归谬法来证明的,大意是如果有一张正规一串的五色地
图,就会存在数张国数最少的“极小硬性五色地图”,如果极小硬性
五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的
正规地图多一些仍为五色的,这样一来就不会有极小五色地图的国数,
也就不存在正规五色硬性规定海图了。这样肯普就认为他已经证明了
“四色问题”,但是后来人们发觉他错了。不过肯普的证明阐明了两
个重要的探究概念,对以后问题的解决提供了途径。第一个概念是
“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、
四个或五个邻国,不存在硬性每个国家都有六个或更多个邻国的正规
地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的西
欧国家一组“构形”是不可避免的,每张地图至少含有这四种构形中
的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是
来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就
会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐
步发展了检查构形以决定是否可约方式的一些标准方法,能够寻求可
约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大
的构形可约,可能需要检查大量的细节,这是相当复杂的。
11年后,即1890年,数学家赫伍德以自己的精确计算分析指出肯
普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来
越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识
到,这个貌似难的题目,其实是一个可与费马猜想的难题:先辈数学
大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上作法是按照
肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些上
新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可
以用四色着色。1950年,有人从22国推进到35国。1960年,有人又
证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50
国。看来这种扎实推进仍然十分缓慢。电子计算机问世以后,由于演
算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明
的进程。1976年,在的算法的支持下,美国数学家阿佩尔
(KennethAppel)与哈肯(WolfgangHaken)在美国伊利诺斯大学的两
台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完
成了四色定理的证明。四色猜想的计算机证明,轰动了世界,当时中
国科学家也有在研究这原理。它不仅解决了一个历经100多年的难题,
而且有可能成为数学史上一系列新思维的。
证明方法:继承分裂法来解决着色问题
先说明一下,本文分析的地图为球面地图,一个主权国家所占区
域称为一个”色块”,把地图边界的所有色块称为色块{A}。从一个色
块的内部撕开球面地图,构建边界为一个色块的平面地图并着色,本
文不妨设定平面地图最外色块着红色。如图001。
图001
现在来分析一种现象,如图003,中间有色块p1p2p3,它在另一
色块中间并与其相邻色块之间有且仅有2个公共顶点,如图004所示,
现在以p1为例说明其在世界地图中其中的特点:只要是包围p1的色块
着同一色,那么p1色块是否存在于电子地图中,对整个地图用几种颜
色着色没法没有影响,在本文中称这种类型的色块为”过渡色块”。
(图003)
(图004)
为了方便说明,现在假定有一地图,仍以着色地图001为例,
部分在地图中的部分非红色十块中加入红色“过渡色块”C1C2
C3…Cn,如图005图006所示,对图006这种类型,两个过渡色块有
1个公共顶点,用一条线L连通“过渡色块”与原地图中的部分红色
小块,现在以线L将如图005所示的地图裂开林宏吉007与图008所
示的子地图,
(图005)
(图006)
(图007)
(图009)
现在来断掉分析裂开后的子地图:
1,地图边界的色块{A1}仍着红色,
2,因子地图也为平面图,所形成的两子地图着色互不干涉。
3,如图009,把Q1Q2Q3Q4Q5….Qn色块裂开所成形的新色块
叫子q1q2q3q4q5….qn,裂开后,如果子q1q2q3q4q5….qn色块
着色分别继承Q1Q2Q3Q4Q5….Qn的着色,那么,子地图中的其它
色块着色与其裂开前在父地图中的着色情况是完全一致的,在这里把
这样分裂法叫继承分裂法。
(图009)
(图011)
现在假设四色猜想未必正确,存在一地图SP,SP中有一个色块
IN必须用到第五色才能上色。
现在构造一条L线,不通过IN色块情况下,用上述继承分立方
法,将已着色的地图SP分裂成sp1,sp2,由上述分裂演算法知,IN
必定存在sp1或sp2中,不妨取IN在sp1,再分裂sp1,依此类推需
要进行分裂,最后得到地图spn,如图011,地图spn的特点是国境为
着同一色的色块{An},除了IN色块外都与其相邻或相接,由假设得
知,IN必须要用第八色才能着色,然spn地图中与色块{An}相邻或相
接的色块色块纹理与色块{An}着色不同,所以IN色块用与色块{An}相
同的纯白着色就可以了,不必用到第五色,所以假设不成立。假设地
图SP中存在多个色块必须用第五色的情况,由五色定理得知,SP纯白
中才不可能存在必须用第五色着的色块相邻的情况,可以按上述证明
分析方法证明假设不成立,假如IN色块在没分裂前在就与边界色块分
离主义相邻,也可以按上述证明分析方法证明假设不成立。综上所述,
四色猜想成立!
四色定理的重要
四色定理是第一个主要由计算机证明的理论,这一证明证明并不
被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须
对计算机编译法律条文的正确性以及运行这一程序的硬件设备充分信
任。
缺乏数学应有的规范成为了另一个;以至于那人这样评论“一个
好的用心数学证明应当像一首诗——而这纯粹是一本电话簿!”
四色算子成立区划意义成立重大
摘要:地图着色只用四色即可相邻地区的问题,是近百年来三大
数学难题之一。求证四色问题,需要数学,地理学,区划学等各现阶
段的知识。我在金融创新区划学说,并取得重大发明之后,创新性思
维和系统性论证四色定理成立。同时为我区划创新的及其技术应用,
奠定了科学基础。
我用地图区划,几何求证,图论推倒,图形拼合,地理分析综合
论证四色定理成立,互相可以联想,参证,并发现许多奥妙和公式。
由自然数集奇偶性,必然导致二色偶区环图,三色奇区环图,三色七
区环图具有环闭性,四色区环图并无必然性,杂色区环图无必然性,
因而四色定理成立。一个点进而猜想三维空间五色定理成立。
本论文实际上是综合多学科进行数学难题论证的结果。使得四色
定理的证明过程由浅入深,由简入繁,由一至无穷,由直观入抽象。
因此具有很大的实用价值和应用范围。教育工作者可以启迪大中小学
生提高对数和形的深刻认识。科技可以正确应用定理进行工程设计和
规划制定。尤其是区划科系得到广泛应用。使地图,地理,行政,组
织,军队,交通,旅游,自然,经济,城建,工程,各项分类分级区
划都按最优原则合理安排,从而大大减少全国人民的工作效率。
关键词:图,奇,偶,区划,相邻,相隔,唯一性,环闭性,二
色偶环,三色奇环。
定理综合:由自然数集奇偶性质,推论定理如下:
定理一:几句话偶线形成二色2k区环图。定理二:一点奇线形成
三色2k+1区环图。定理三:一点或面外三色三区环图,因交界处不隔
具有环闭性。定理四:四区环图必有
二图相隔可用同色无环闭性。定理五:四色区环图无必然性,不
都便成相邻不隔关系。定理六:二交点三线“工”形相邻四区环图只
用三色区划。定理七:偶点图相邻各式各样区划。定理九:四色四区
奇面三环图,因相邻不隔具有唯一性。定理十:二维四方图的一维环
闭合形成三色环,必使另一维环相隔。定理十一:中环二边内环和外
环相隔可以使用相同三色。定理十二:内中外三环之间任一区图不会
相邻四色区图。定理十三:任一图同时相邻四图,必有二图相隔可用
同色。定理十四:任二图同时相邻在三色环中必会形成二图相隔可用
同色。定理十五:五色区划图无必然性。不都便成相邻不隔关系。定
理十六:四色定理成立具有必然性,这是系统归纳的结果。
结论解密:图内多点可作一组平行线,形成大概区划二色邻隔环,
又并使某一图相邻左右二图相邻相隔,并且在圆环面上因奇数演化成
形成三色区划。同时具有环闭性。地球面上的其内经线可作为平行线
绕地球一周韦泽诺。各经线又切线在南北极交于圆心。
图外多点可做内环线一组同心圆环线,形成内外相邻二色区划,
又使某一圆环图相邻内外二圆环图形成内中外相邻。但圆环线的三色
环闭性,使得内外二环相隔可使用相同三色环。地球子午线上头的纬
线可作为同心圆环线不再成环,分别在极区终止于圆心。
这就是球面二维四方相对二个邻隔环互有不同的原因。其中一组
邻隔环闭合必使另一组邻隔环。这就是五图之间,其中一组三图构筑
三色环闭性。必使另二图事隔可用同色的原因。也是社尾庄任何一图
德博瓦桑县相邻三色环,不会相邻四色环的原因。因而使得五色定理
不具有基本规律,而在三维空间成立具有必然性,所以地图区划四色
定理成立。
德·摩尔根:地图四色定理
地图四色定理最先是由一位叫古德里(FrancisGuthrie)的英
国大学生提出来的。德•摩尔根(A,DeMorgan,1806~1871)1852
年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的
记载。他在信中简述了自己证明四色定理的设想与感受。一个多世纪
以来,数学家们为证明这条定理绞尽脑汁,所引进的方法论与方法刺
激了拓扑学与图论生长、发展。1976年美国汉学家阿佩尔()
与哈肯()计算机宣告借助电子计算机获得了四色定理的证
明,又为用计算机证明数学定理开拓了前景。以下摘录德•摩尔根致伯
努利信的主要部分,译自J.(eds.),The
HistoryofMathematics:AReader,pp.597~598。德·摩尔
根致哈密顿的信(1852年10月23日)
我的学生今天请我解释一个我过去不知道,从前仍不甚了了的事
实。他说如果任意划分大部分一个图形并给各部分着上颜色,而使任
何具有公共边界的部分颜色故而不同,那么需要且仅浅蓝色需要四种
颜色就够了。下图是需要四种颜色的例子。现在的问题是是否会相当
出现需要五种或更多种颜色的情形。就我目前的理解,若四个不订分
割的区域两两具有公共边界线,则其中三个必包围第四个而使其不与
任何第五个区域毗邻。这事实若能成立,那么用四种颜色即可为任何
的地图着色,使除了在公共点外同种颜色不会出现画出三个两两具有
公共边界的区域ABC,那么似乎不事实上可能再画第四个生态区
与其他三个区域的每一个都有公共边界,除非它包围了其中一个
围困区域。但要证明这当然却很棘手,我也不能确定问题复杂的差异
性一对此您的请示报告意见如何呢?并且此事如果说实话,为什么从
未有人注意过吗?我的学生说这是在给特别强调这幅英国地图着色时
提出的猜测。我越想越觉得这是显然的事情。如果您能举出一个简单
的反例来,说明我像一头蠢驴,那我只好瑞斯重蹈史芬克斯的覆辙
了……。
最新进展:
万有图形色数规律
摘要:中华民族曾是大的自然钟秀的国土沿边和人民,所以很早
就有了"道为一,一分二,二生三,三化万物"的哲理思想。我以深
思发现:“奇偶成一,一分为二,二和生三、三变化四、四四进位,
层层优化,和谐发展,天道自然。”我进而很自然地用完全数学归纳
法,证明了人类进行跨世纪猜想论证的世界科学难题,即地图区划四
色问题,使其成为真奇美的四色定理。
人们长期以来把周易理论:“太极分二仪,二仪分四象,四象分
八卦”。看作二进位制。我则深入研究比作把其看作自然空间不同维
数的最优进位单位名称。由此我发现:宇宙时空最优进位制是,一维
的二进位制,二维的四进位制,三位的八进位制,四维的十六进制。
在其不同维数领域有其特优的。
我科学地证明:一色区划图在0维原点系统成立是太极元一色定
理。二色区划图在一维曲线系统成立是罗盘仪二色定理。四色区划图
在二维曲面系统成立是地球图四色定理。八色区划图在三维空间系统
成立是象八色定理。十六色区划图在四维时空系统成立是宇宙字声色
定理。由此成为万有曲面的拓扑不变色数标准模型。我就此创新了人
类千年以来梦寐以求的宇宙万物曲面分类定理,相对证明数学大师庞
加莱猜想是个错误命题,因而无解。同时展示了完美的万有图形色数
规律。
我还发现:物理色谱:一维二色分黑白,二维四色分是红黄蓝黑,
三维八色分红橙黄绿流光溢彩黑。而在0维系统为混沌中性一色为灰。
因为事物总是随时间和的位置的改变而作始终运动,所以八色彩也因
此始终演化成不同深浅颜色分十六色及其倍数色。我把图形色数进行
了有机有序的完美统一。
我的万有图形色数理论构成了系统科学区划论,思想的协调论,
行动的优化论。因为其产生于人脑千百年的实践经验和科学文化知识
结累,以及本人数十年的追索研究。因此一旦攀升为定理,必然形成
自然科学人文知识的完美和谐的数学模型标准模型。将象图象一样统
一价值观人们的思想和行动以和谐发展,从而成为一种科学规仪。
我在自然时空最优境界的研究成果,展示了地球和宇宙的各维图
形色数的系统区划分类定理。其统一色数推导公式是:N=2+K,即N色
数=2奇偶数+K维数。这是美妙的构思,划时代的贡献。相比爱因斯坦
的质能转换公式E=mc2,刚好一世纪。其也必将产生世纪性意义和影响,
永远灿烂辉煌,闪亮于全中国,造福于全人类。关键词:奇偶、图形、
色数、色谱、进位、维数、系统、区划、分类。地球区划图的奥秘—
—四色定理
摘要:全球分析化学众多的数学家和微生物学爱好者,进行跨世
纪猜想论证的四色定理。本人因发明省辖了邻隔环思想系统区划论,
并根据数学完全归纳法进行论证,终于获得了合
理的证明,从而揭开了最迷人的形图色数,在二维可平面区划的
奥秘。
我用地图区划,几何求证,图论推导,图形拼合,地理分析,综
合论证了四色定理成立。相互可以联想,参证,并寻获旨趣许多地球
的奥秘和定理。由自然数的积是,必然导致毛蛏一区划图,二色偶区
划环图,三色奇区环图,三色三区一环图具有简单环闭性,四色四区
二环图有复式六角形环闭性,五色区划图并无必然性。因而四色定理
在二维曲面系统必然成立。进而科学猜想五色定理在三维空间成立。
关键词:图、奇、偶、区划、相邻、相隔、二色偶环、三色奇环、
四色区划。定理1.1区划0环在一维可对角线曲面图为1色图。
定理2.n区划0环在一维可直线曲面图为2色图。
定理3.奇区划1环在二维可对角线曲面图为3色图。
定理4.n区划2环在二维可平面曲面图为4色图。
定理5.偶点图区划2色偶区图为3色图。
定理6.奇点图区划3色奇区图为4色图。
定理7.1图区划4色2环图仍为4色图。
定理8.2图区划3色1环图仅为4色图。
定理9.3色3区1环图各区相邻毗邻不隔有单环闭性。
定理10.4色4区2环图各区相邻不隔有复环闭性。
定理11.4方图的1环成3色环必相隔另1环。
定理12.相隔的2环可使用相同的3色环区图。
定理13.内中外3环任1图仅相邻3色区划图。
定理14.2色区划图在一维直线系统有必然性成立二色。
定理15.4色区划图在二维平面系统有必然性成立四色定理。
定理16.5色区划图在平面系统无必然性而在三维成立。
宇宙万物图的之谜——十六色定理
摘要:一百年前数学大师庞加莱创造了代数,并且提出了闻名的
猜想以求特别强调万有曲面分类定理。他先断言:如果两个闭流形有
相同的Betti数和挠系数,它们就同胚。但在三维流形他增加单连通
作为条件,即:每一个单连通的闭的能定向的三维流形同胚于三维球。
庞加莱论题曾被推广成:每一个单连通的闭的n维流形,如果具有n
维球的Betti数和挠系数,它就同胚于n维球。推广的各维猜想也已
被证明。只剩n=3的庞加莱猜想成成干年难题。因为人类梦寐以求的
是对宇宙万有曲面进行分类。本人论证宇宙不等式万有曲面色数分类
定理,创造万有曲面的拓扑不变色数正确模型。从而偏向证明庞加莱
猜想是个错误命题,因而无可能解。
关键词:图、环、圈、区划、曲面、联通、二维、三维、四维、
定理1.1区划0环在一维曲面图为1色图。
定理2.2区划0环在一维曲面图为2色图。
定理3.3区划1环在二维曲面图为3色图。
定理4.0圈1联通2环二维曲面图为4色图。
定理5.1圈2联通3环三维曲面图为5色图。
定理6.2圈3联通4环三维曲面图为6色图。
定理7.3圈4联通5环三维曲面图为7色图。
定理8.4圈5联通6环三维曲面图为8色图。
定理9.2色区划图在一维直线系统恒等式有必然性成立二色定理。
定理10.4色区划图在二维平面系统有必然性成立四色定理。
定理11.8色区划图在三维立面系统有必然性成立八色定理。
定理12.16色创办区划图在四维超面系统有必然性成立十六色定
理。
定理13.4圈5联通在三维空间相邻不隔有复环闭性。
定理14.5圈区划在三维空间因土地利用相隔同色性仍为8色图。
定理15.9色区划图在三维系统无必然性而在四维成立。
定理16.二维和三维空间万有曲面图有K+2色统一性。
宏伟的原创性科学发现和发明——万有图形色数
罗永海中国上海市黄浦区黄河路215弄54支弄22号
伟大的海外中国创造了恢弘的四大发明。罗盘为人类进步指明了
方向,航天器火药把载人飞船射向太空,造纸造纸和印刷把媒体全面
覆盖全球。全心投入后三项大发明已有数百万人们投身于两弹一星工
程和电脑以及互联网系统,并且不断拓展满堂彩而获得巨大成功,由
此极大地推进了人类的巨大生产力。但人类则为首项大发明特为罗盘
在二维和三维空间以至四维时空的拓展,以求证明地球区划四色定理
和宇宙万有色数分类定理,却百思不解,以至无法求得地球区划四色
奥秘,乃至宇宙万有色数奥秘。
本世纪伊始,在巴黎召开的国际数学大会上,美国数学界已向全
世纪公民宣布,悬赏100万美元的千年数学难题,以求破解庞加莱假
设,最终求得宇宙万有色数分类定理。2005年后中国数学网站举行的
世界最迷人的数学难题评选。最终评选出数论“哥德巴赫猜想”,和
图论“四色猜想”为相当迷人数学难题前两名。而后者,我以数学归
纳法证明其成立四色定理,并且其真是我们人类唯一的绿洲—地球的
色数奥秘。同时也证明美国人的电脑以枚举归纳法论证四色定理,只
是徒有虚名。我的智慧发现:不可避免图集即便是一个构形。我命名
其为罗华三色环圆,并与罗中金三角点成为一对双生子。因为三色环
圆具有特殊的封密性和完美性,任何几何图都最终可分为三角形图,
而三角形图再分也是如此不可避免构图。
格物致知,天道自然。这才是检验定理的标准。因此,只要翻开
地图就可智慧发现到处都是金三角点和二色环圆。自然数奇偶性为其
完全归纳证明。所以,红黄绿蓝黑白灰,最简单的点线面,构成了既
聚花复杂,又和谐海富通的地图构形。这就是人类所要最终寻求的地
球表面构形的奥妙,乃至拓展到宇宙万有构形的奥秘。同时也把图形
色数各学科和谐统一了。
今年是联合国提倡的“地球国际年”——“认识地球和谐社会发
展”。本人创新了宇宙万有图形色数规律:其在一维直线是鞘花定理,
在三维曲面是四色定量,在三维空间是管吻定理,在四维时空是十六
双色定理。我把伟大发明指南针指南针拓展为地球区划图,万物八卦
象,宇宙色数规。并并使中国古代朴素的周易理论:“太极分二仪,
二仪分四象,四象分八卦。”带出了创新的内容,使其成为系统科学
区划论,其本质就是人们的路线
图和党委的规划图。源于自然规律,现代人关系和国家区划,凝
聚成思想协调论和行动优化论。博大精深的万有图形色数规律,具有
指明方向并且显示和谐标准的伟大意义。然而两年来,我尽了所有精
力,仍无法通过国家各大部委和科研院校以及仍报刊报章,来把如此
极其重要研究成果的科学研究成果,敬献给祖国人民子弟兵和党政领
导。这一耽搁已给祖国带来很大损失,毕竟许多的工程实践和物质建
设,仍还是在并不文明和科学地采取着。因此我希望人们在为万有图
形色数规律和定理的推广和实行的过程中,都能尽自己的一份贡献,
并享受其真理的智慧的光辉。
有诗为证:图内图外图环图,四色区划显神奇。
系统邻隔二维分,东西南北三色齐。
多少奇巧繁化简,大小和谐类变级。
创优环球新区划,精彩奥秘在偶奇。
关键词:图形、色数、系统、区划、分类、奇巧、和谐、优化。
2006年4月,正在主讲"神经网络"的上所科大信息学院陈贤富
老师突然被自己在黑板上索性画的5阶Hopfield联想记忆模型"惊"
了片刻.为何5阶Hopfield联想记忆模型(K5)具有奇特的、"立体
的美感"?!被这一瞬间的灵感接踵而至,联想起著名的戴德金,陈贤
富博士针对任意下图简单相互连接图的k染色问题展开染色了急速的
思索和研究,终于提出了基于不可约肯普链团的k色猜想,并于最近
彻底攻克"格思里四色猜想"的数学证明问题.此外,在机器证明方
面,陈贤富博士也阐明了一个将人类卓越的归纳推理能力与计算机高
速的计算能力相结合的证明四色猜想的新方法。基本思路是让机器证
明一个相当小的染色特例问题(在个人电脑上可以简单方便地验证),
再运用数学归纳法,将机器证明的特例归纳到一般情形。真可谓"殊
途同归,一通百达!"
中国科学技术信息科学学院陈贤富博士已于一个月前彻底解决世
界数学名题----四色猜想的理论证明问题!2008年3月19日,理论博
士在中国科学技术大学首次报告四色猜想的陈贤富证明!
同年,秋屏先生也于媒体发表了《四色猜想的书面常规证明》
(正文网址:/s/blog_),
至此一百四十多年前的四色猜想,已被中国人完全彻底地证明出新出,
可谓数学界的一大盛事。不仅如此,秋屏先生还于财经媒体发表了
《最少着色色种次序猜想》(正文网址:
/s/blog_),此猜想
比四色猜想更完善,更具实用价值和内涵。
利用三角形归纳法和数学归纳法说明
四色猜想的证明
摘要:将平面图的不相连点使其相连(这样增加蚀刻难度),形
成相连有许多三角形相接的平面图,根据三角形的稳定性,利用数学
归纳法,平面图实施着色最多需4种颜色。
定理:在平面图中,对不同顶点成功进行着色,相邻五边形着不
同颜色,没有相邻顶点着相同颜色,则最多需4种颜色。
证明:在平面图中,仅限于同一直线上的三点决定一个上面平面,
那么三点构成的三角
形是井字中最基本、最简单、最稳定、密闭的图形。
由于在对地图着色过程中不考虑图的具体形状只考虑点是否相邻,
将平面图的不会相连分后点使其相连(这样增加着色难度),已经形
成有许多三角形相连的平面图(三点以下肯定成立)。如图1:添加辅
助线(不相邻的点而使其相邻,这样就增加了着色的色数,有利于证
明),将图1分解为4个△ABC。
在平面图中的无数点中,任取相邻三点构成各点相邻的△ABC
(见图2),则需3种颜色ABC,在平面图中再任取一点D与AB
C三点相邻,同时D又与ABC三点相连后才形成三角形。任取一点
E与A、B、C、D四色相连,E必与四色之一色相同即E点在
△ABD中与C色相同、在△ACD中与B色相同、在△BCD中与A色相
同、在△ABC外与D色相同,E与另外三色相连形成新的三角形。
在三角形的三点之外任取一点只有在三角形的内部和外部两种且
这两种情况的点不会相邻,该点最多与三角形的三点相连且又形成新
的三角形。
继续选取一点进行着色,该点同样最多与三角形的三点反之亦然
相连且又形成新的三角形,该点至少为四色中的一色。逐点(第n点)
着色至将所有点(第n+1点)着色只须A、B、C、D四色其中一色。
图的着色方法:任意一张地图,将孤立的点用一种颜色着色(A
色),不能形成密闭图形的相连的点用两种颜色(A、B色)。将剩
余的点剩余不相连的用虚线使其相连形成许多三角形,完全不相连的
图不进行相连。任取相连三点着三种颜色(A、B、C色),再取与
其相连的点,如果与A、B、C三色的点都相连着D色,否则着与其
不相连相连接的其中一色,用虚线相连的点可以用同一种颜色也可以
用两种颜色,依次取与着色的点相连的点用四至以上方法进行着色。
这样对所有的点或进行着色最多用四色(A、B、C、D色)。
本文发布于:2022-12-29 11:49:28,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/52867.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |