中考数学试卷
一、选择题
1.下列各数是无理数的是()
A.1B.﹣0。6C.﹣6D.π
2.太阳半径约696000千米,则696000千米用科学记数法可表示为()
A.0.696×106B.6.96×108C.0。696×107D.6.96×105
3.下列图形中是轴对称图形但不是中心对称图形的是()
A.B.C.D.
4.下列计算中,结果是a7的是()
A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a4
5.如图,该几何体的俯视图是()
A.B.C.D.
6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应
点P'的坐标是()
A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)
7.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,
∠ABC=60°,则∠EAD+∠ACD=()
A.75°B.80°C.85°D.90°
8.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()
A.B.C.2πD.
9.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两
点,当y1>y2时,x的取值范围是()
A.x<﹣1或x>4B.﹣1<x<0或x>4
C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4
10.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和
点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线
以每秒1cm的速度向右移动,至点C与点N重合为止,设移动
x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的
大致图象是()
A.B.C.D.
二、填空题
11.分解因式:x3y﹣xy3=.
12.在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为
13.分式方程=1的解为
14.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大
小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为
15.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,
平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策
略.
小光的策略是:石头、剪子、布、石头、剪子、布、……
小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)
例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表
局数123456789
小光实际策略石头剪子布石头剪子布石头剪子布
小王实际策略剪子布剪子石头剪子剪子剪子石头剪子
小光得分33﹣100﹣13﹣1﹣1
小王得分﹣1﹣13003﹣133
已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.
二、解答题
16.先化简,再求值:.其中x=1.
17.解不等式组,并求出不等式组的整数解之和.
18.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2
(1)求实数m的取值范围;
(2)若x1﹣x2=2,求实数m的值.
19.如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的
中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
20.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已
经成为一种时尚.“健身
达人”小陈为了了解他的好友的运动情况.随机抽取了部分好
友进行调查,把他们6月1日那天行走的情况分为四个类别:
A(0~5000步)(说明:“0~5000”表示大于等于0,小于等
于5000,下同),B(5001~10000步),C(10001~15000步),
D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天
行走的步数超过10000步?
21.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1。5万人被迫转移,邻近县市C、
D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已
知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B
两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B
两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
(2)设C、D两市的总运费为w元,
求w与x之间的函数关系式,
并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的
路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若
C、D两市的总运费的最小值不小于10320元,求m的取值范围.
A(吨)B(吨)合计(吨)
C240
Dx260
总计(吨)200300500
2018年湖北省黄石市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有
一个是符合题目要求的)
1.(3分)下列各数是无理数的是()
A.1B.﹣0.6C.﹣6D.π
【分析】依据无理数的三种常见类型进行判断即可.
【解答】解:A、1是整数,为有理数;
B、﹣0。6是有限小数,即分数,属于有理数;
C、﹣6是整数,属于有理数;
D、π是无理数;
故选:D.
【点评】本题主要考查的是无理数的定义,熟练掌握无理数的三种常见类型是解题的关键.
2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()
A.0.696×106B.6。96×108C.0.696×107D.6。96×105
【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.
【解答】解:696000千米=696000000米=6.96×108米,
故选:B.
【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方
法.
3.(3分)下列图形中是轴对称图形但不是中心对称图形的是()
A.B.C.D.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项正确;
D、不是轴对称图形,也不是中心对称图形,故此选项错误.
故选:C.
【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,
图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图
重合.
4.(3分)下列计算中,结果是a7的是()
A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a4
【分析】根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.
【解答】解:A、a3与a4不能合并;
B、a3•a4=a7,
C、a3与a4不能合并;
D、a3÷a4=;
故选:B.
【点评】本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关
键.
5.(3分)如图,该几何体的俯视图是()
A.B.C.D.
【分析】找到从几何体的上面所看到的图形即可.
【解答】解:从几何体的上面看可得,
故选:A.
【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.
6.(3分)如图,将“笑脸"图标向右平移4个单位,再向下平移2个单位,点P的对应点P’
的坐标是()
A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)
【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;
【解答】解:由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点
P’的坐标是(﹣1,2),
故选:C.
【点评】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐
标,上移加,属于中考常考题型.
7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠
BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()
A.75°B.80°C.85°D.90°
【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE
平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠
EAD+∠ACD=75°.
【解答】解:∵AD是BC边上的高,∠ABC=60°,
∴∠BAD=30°,
∵∠BAC=50°,AE平分∠BAC,
∴∠BAE=25°,
∴∠DAE=30°﹣25°=5°,
∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
∴∠EAD+∠ACD=5°+70°=75°,
故选:A.
【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形
外角性质以及角平分线的定义的运用.
8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()
A.B.C.2πD.
【分析】先计算圆心角为120°,根据弧长公式=,可得结果.
【解答】解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
【点评】本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.
9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B
两点,当y1>y2时,x的取值范围是()
A.x<﹣1或x>4B.﹣1<x<0或x>4
C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4
【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.
【解答】解:解方程组得:,,
即A(4,1),B(﹣1,﹣4),
所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,
故选:B.
【点评】本题考查了一次函数与反比例函数的交点问题,能熟记函数的性质和图象是解此题
的关键.
10.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,
点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直
线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN
重叠部分的面积为y,则y与x的大致图象是()
A.B.C.D.
【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问
题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可
分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求
法,作出判断即可.
【解答】解:∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC=CM•CE=;
故选项B和D不正确;
②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;
③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x
﹣18,
故选项A正确;
故选:A.
【点评】此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性
质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.
二、填空题(本大题给共6小题,每小题3分,共18分)
11.(3分)分解因式:x3y﹣xy3=xy(x+y)(x﹣y).
【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.
【解答】解:x3y﹣xy3,
=xy(x2﹣y2),
=xy(x+y)(x﹣y).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提
取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为4π
【分析】先利用勾股定理计算出AB的长,再利用直角三角形内切圆的半径的计算方法求出
△ABC的内切圆的半径,然后利用圆的面积公式求解.
【解答】解:∵∠C=90°,CA=8,CB=6,
∴AB==10,
∴△ABC的内切圆的半径==2,
∴△ABC内切圆的周长=π•22=4π.
故答案为4π.
【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角
形的内心与三角形顶点的连线平分这个内角.记住直角三角形内切圆半径的计算方法.
13.(3分)分式方程=1的解为x=0.5
【分析】方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
【解答】解:方程两边都乘以2(x2﹣1)得,
8x+2﹣5x﹣5=2x2﹣2,
解得x1=1,x2=0。5,
检验:当x=0.5时,x﹣1=0.5﹣1=﹣0。5≠0,
当x=1时,x﹣1=0,
所以x=0。5是方程的解,
故原分式方程的解是x=0.5.
故答案为:x=0.5
【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转
化为整式方程求解.(2)解分式方程一定注意要验根.
14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无
人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是100
(1+)米.(结果保留根号)
【分析】如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计
算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD
即可.
【解答】解:如图,
∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,
∴∠A=60°,∠B=45°,
在Rt△ACD中,∵tanA=,
∴AD==100,
在Rt△BCD中,BD=CD=100,
∴AB=AD+BD=100+100=100(1+).
答:A、B两点间的距离为100(1+)米.
故答案为100(1+).
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关
系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂
线构造直角三角形.
15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、
大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为
【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率
公式即可得.
【解答】解:根据题意列表得:
2345
2﹣﹣﹣(3,2)(4,2)(5,2)
3(2,3)﹣﹣﹣(4,3)(5,3)
4(2,4)(3,4)﹣﹣﹣(5,4)
5(2,5)(3,5)(4,5)﹣﹣﹣
由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上
的数字之积大于9的有8种,
所以两个小球上的数字之积大于9的概率为=,
故答案为:.
【点评】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放
回实验.用到的知识点为:概率=所求情况数与总情况数之比.
16.(3分)小光和小王玩“石头、剪子、布"游戏,规定:一局比赛后,胜者得3分,负者得
﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方
的策略.
小光的策略是:石头、剪子、布、石头、剪子、布、……
小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)
例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表
局数123456789
小光实际策略石头剪子布石头剪子布石头剪子布
小王实际策略剪子布剪子石头剪子剪子剪子石头剪子
小光得分33﹣100﹣13﹣1﹣1
小王得分﹣1﹣13003﹣133
已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.
【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光
拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,
设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小
光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可
得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.
【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小
光拿﹣1分,第五局小光拿0分.
∵50÷6=8(组)……2(局),
∴(3﹣1+0)×8+3=19(分).
设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,
根据题意得:19+3x﹣y=﹣6,
∴y=3x+25.
∵x、y、(25﹣x﹣y)均非负,
∴x=0,y=25,
∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).
故答案为:90.
【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确
列出二元一次方程是解题的关键.
三、解答题(本大题共9小题,共72分。解答应写出必要的文字说明、证明过程或验算步骤)
17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|
【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质、零指数幂的性
质进而化简得出答案.
【解答】解:原式=+1++2﹣
=+1++2﹣
=4﹣.
【点评】此题主要考查了实数运算,正确化简各数是解题关键.
18.(7分)先化简,再求值:.其中x=sin60°.
【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.
【解答】解:原式=•
=,
当x=sin60°=时,
原式==.
【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算
法则.
19.(7分)解不等式组,并求出不等式组的整数解之和.
【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数
解即可.
【解答】解:解不等式(x+1)≤2,得:x≤3,
解不等式≥,得:x≥0,
则不等式组的解集为0≤x≤3,
所以不等式组的整数解之和为0+1+2+3=6.
【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算
法则是解本题的关键.
20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2
(1)求实数m的取值范围;
(2)若x1﹣x2=2,求实数m的值.
【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=2,和已知组成方程组,求出方程组的解,再根据根与
系数的关系求出m即可.
【解答】解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,
解得:m<1,
即实数m的取值范围是m<1;
(2)由根与系数的关系得:x1+x2=2,
即,
解得:x1=2,x2=0,
由根与系数的关系得:m=2×0=0.
【点评】本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的
关系的内容和根的判别式的内容是解此题的关键.
21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A
为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得
到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;
(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再
根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,
然后根据切线的判定定理得到结论.
【解答】(1)解:连接DB,如图,
∵∠BCD+∠DEB=90°,
∴∠DEB=180°﹣120°=60°,
∵BE为直径,
∴∠BDE=90°,
在Rt△BDE中,DE=BE=×2=,
BD=DE=×=3;
(2)证明:连接EA,如图,
∵BE为直径,
∴∠BAE=90°,
∵A为的中点,
∴∠ABE=45°,
∵BA=AP,
而EA⊥BA,
∴△BEP为等腰直角三角形,
∴∠PEB=90°,
∴PE⊥BE,
∴直线PE是⊙O的切线.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连
过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时
尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他
们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等
于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),
统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了30位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为120度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天
行走的步数超过10000步?
【分析】(1)由B类别人数及其所占百分比可得总人数;
(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;
②用360°乘以A类别人数所占比例可得;
③总人数乘以样本中C、D类别人数和所占比例.
【解答】解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10、D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
【点评】此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得
到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近
县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾
区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B
两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市
的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨)B(吨)合计(吨)
Cx﹣60300﹣x240
D260﹣xx260
总计(吨)200300500
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范
围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m
>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
【分析】(1)根据题意可以将表格中的空缺数据补充完整;
(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
(3)根据题意,利用分类讨论的数学思想可以解答本题.
【解答】解:(1)∵D市运往B市x吨,
∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)
=(x﹣60)吨,
故答案为:x﹣60、300﹣x、260﹣x;
(2)由题意可得,
w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
∴w=10x+10200(60≤x≤260);
(3)由题意可得,
w=10x+10200﹣mx=(10﹣m)x+10200,
当0<m<10时,
x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
解得,0<m≤8,
当m>10时,
x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
解得,m≤,
∵<10,
∴m>10这种情况不符合题意,
由上可得,m的取值范围是0<m≤8.
【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,
利用函数和不等式的性质解答.
24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).
(1)如图1,若EF∥BC,求证:
(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.
【分析】(1)由EF∥BC知△AEF∽△ABC,据此得=,根据=()2即可得证;
(2)分别过点F、C作AB的垂线,垂足分别为N、H,据此知△AFN∽△ACH,得=,
根据=即可得证;
(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,由重心性质知S△
ABM=S△ACM、=,设=a,利用(2)中结论知==、==a,
从而得==+a,结合==a可关于a的方程,解之
求得a的值即可得出答案.
【解答】解:(1)∵EF∥BC,
∴△AEF∽△ABC,
∴=,
∴=()2=•=;
(2)若EF不与BC平行,(1)中的结论仍然成立,
分别过点F、C作AB的垂线,垂足分别为N、H,
∵FN⊥AB、CH⊥AB,
∴FN∥CH,
∴△AFN∽△ACH,
∴=,
∴==;
(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,
则MN分别是BC、AC的中点,
∴MN∥AB,且MN=AB,
∴==,且S△ABM=S△ACM,
∴=,
设=a,
由(2)知:==×=,==a,
则==+=+a,
而==a,
∴+a=a,
解得:a=,
∴=×=.
【点评】本题主要考查相似形的综合问题,解题的关键是熟练掌握相似三角形的判定与性质
和三角形重心的定义及其性质等知识点.
25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.
(1)求抛物线的解析式;
(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;
(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.
①求证:∠PDQ=90°;
②求△PDQ面积的最小值.
【分析】(1)将点(3,1)代入解析式求得a的值即可;
(2)设点C的坐标为(x0,y0),其中y0=(x0﹣1)2,作CF⊥x轴,证△BDO∽△DCF得=,
即==据此求得x0的值即可得;
(3)①设点P的坐标为(x1,y1),点Q为(x2,y2),联立直线和抛物线解析式,化为关于x
的方程可得,据此知(x1﹣1)(x2﹣1)=﹣16,由PM=y1=(x1﹣1)2、QN=y2=
(x2﹣1)2、DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1知PM•QN=DM•DN=16,即=,从
而得△PMD∽△DNQ,据此进一步求解可得;
②过点D作x轴的垂线交直线PQ于点G,则DG=4,根据S△PDQ=DG•MN列出关于k的等式求
解可得.
【解答】解:(1)将点(3,1)代入解析式,得:4a=1,
解得:a=,
所以抛物线解析式为y=(x﹣1)2;
(2)由(1)知点D坐标为(1,0),
设点C的坐标为(x0,y0),(x0>1、y0>0),
则y0=(x0﹣1)2,
如图1,过点C作CF⊥x轴,
∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°,
∵∠BDC=90°,
∴∠BDO+∠CDF=90°,
∴∠BDO=∠DCF,
∴△BDO∽△DCF,
∴=,
∴==,
解得:x0=17,此时y0=64,
∴点C的坐标为(17,64).
(3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0),
由,得:x2﹣(4k+2)x+4k﹣15=0,
∴,
∴(x1﹣1)(x2﹣1)=﹣16,
如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N,
则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2,
DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1,
∴PM•QN=DM•DN=16,
∴=,
又∠PMD=∠DNQ=90°,
∴△PMD∽△DNQ,
∴∠MPD=∠NDQ,
而∠MPD+∠MDP=90°,
∴∠MDP+∠NDQ=90°,即∠PDQ=90°;
②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4),
所以DG=4,
∴S△PDQ=DG•MN=×4×|x1﹣x2|=2=8,
∴当k=0时,S△PDQ取得最小值16.
【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析
式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.
本文发布于:2022-12-29 04:29:05,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/51132.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |