中值滤波(MedianFilter)
中值滤波(MedianFilter)
中值滤波的中⼼思想就是逐项地遍历信号,并⽤相邻信号项的中值替换当前值。这种⽅法是的滤波处理⾮常快速,⽽且对于⼀维数据集合和
⼆维数据集合(例如图像)都适⽤。
在下⾯的例⼦中,我们使⽤SciPy信号⼯具箱中的实现。
#!/usr/bin/python3.4
#_*_encode:utf-8_*_
importnumpyasnp
importpylabasp
assignal
#getsomelineardata
x=ce(0,3,101)
print('Withoutnoisy:',x)
#addsomenoisysignal
x[5::10]=1.5
print('Withnoisy:',x)
(x)
(t(x,3))
(t(x,5))
(['originalsignal','length3','length5'])
()
运⾏⽂本输出结果如下:
Withoutnoisy:[0.0.030.060.090.120.150.180.210.240.270.30.33
0.360.390.420.450.480.510.540.570.60.630.660.69
0.720.750.780.810.840.870.90.930.960.991.021.05
1.081.111.141.171.21.231.261.291.321.351.381.41
1.441.471.51.531.561.591.621.651.681.711.741.77
1.81.831.861.891.921.951.982.012.042.072.12.13
2.162.192.222.252.282.312.342.372.42.432.462.49
2.522.552.582.612.642.672.72.732.762.792.822.85
2.882.912.942.973.]
Withnoisy:[0.0.030.060.090.121.50.180.210.240.270.30.33
0.360.390.421.50.480.510.540.570.60.630.660.69
0.721.50.780.810.840.870.90.930.960.991.021.5
1.081.111.141.171.21.231.261.291.321.51.381.41
1.441.471.51.531.561.591.621.51.681.711.741.77
1.81.831.861.891.921.51.982.012.042.072.12.13
2.162.192.221.52.282.312.342.372.42.432.462.49
2.521.52.582.612.642.672.72.732.762.792.821.5
2.882.912.942.973.]
中值滤波,窗⼝长度为3和5:
从图形中可以看出,窗⼝越⼤,信号和原始信号相⽐失真越严重,但同时看上去也越平滑。
本文发布于:2022-12-29 00:46:44,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/50080.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |