207
APPENDIX2
THETHERMALOXIDATIONOFGRAPHITE
ard
l
Graphiteisudinavarietyofnuclearreactortypes;principallyformoderator,reflector,fuel
tisaformofcarbon,likecoalandcharcoal,itsoxidation
dising
environmentsofparticularinterestareair(oxygen),carbondioxideandsteam(water).
onsandThermodynamics
onwithOxygen
½O
2
+C=CO∆H=--1(A2.1)
O
2
+C=CO
2
∆H=--1
(A2.2)
where∆Histhestandardenthalpyofformationat298°C.
Reaction(A2.1)maximistheamountofcarbonwhichmayberemovedbyagiven
massofoxygen(ascarbonmonoxide).Reaction(A2.2)maximistheamountofheat
producedbyoxidisingagivenmassofcarbon(tocarbondioxide).Reaction(A2.2)mayalso
beregardedasproceedinginstages,withreaction(A2.1)followedby
½O
2
+CO=CO
2
∆H=--1
(A2.3)
(obtainedbydifference-Hess’slaw)
Reaction(A2.3)cantakeplacewhollyinthegaspha.
ethisfact,
puredennucleargraphitesdonotreadilyreactwithair,sokineticfactorsareobviouslyof
importance.
onwithCarbonDioxide
Thiscanbereadilyinferredbymultiplyingreaction(A2.1)by2,includingthe∆Hterm.
Theresultisthenaddedtoreaction(A2.2)l,the(Boudouard)reactionis
C+CO
2
=2CO∆H=+-1(A2.4)
onwithWater(watergasreaction)
C+H
2
O=CO+H
2∆H=+-1(A2.5)
also
208
C+2H
2
O=CO
2
+2H
2∆H=--1(A2.6)
Thehydrogenproducedcanthenreactwithcarbon:
C+2H
2
=CH
4∆H=--1(A2.7)
Subtracting(A2.5)from(A2.6)gives
CO+H
2
O=CO
2
+H
2∆H=--1
(A2.8)
Thisisthewatergasshiftreactionwhichtakesplaceinthegaspha.
Inmanypracticalcas,productsfromtheabovereactionsarefreetoescape,suchthat
halpychangesareofimportance,however,
sincetheygiveameasureoftheheatproducedinexothermicreactions.
isms,RegimesandKinetics
isms
T-catalyd
oxidationtypicallyfollowstheroute:
(i)Transportofoxidanttothegraphitesurface.
(ii)Adsorptionofoxidantontothegraphitesurface(physisorption).
(iii)Formationofcarbon-oxygenbonds(chemisorption).
(iv)Formationofcarbon-hydrogenbondsinreaction(A2.7)(reduction).
(v)Breakingofthecarbon-carbonbonds.
(vi)Desorptionofcarbonmonoxide,orotherproduct.
(vii)Transportofreactionproductfromthegraphitesurface.
Anyoftheabovestepsmayberatecontrolling,pthemajorreactant
concentrationgradient.
llingFactors
Factorscontrollingtherateofoxidationmayincludethefollowing:
(viii)Therateatwhichtheoxidantissuppliedtothesurface.
(ix)Thepartialpressureoftheoxidant.
(x)Thereactivesurfaceareaavailabletotheoxidantatthesurface.
209
(xi)Theamountanddistributionofcatalyticimpuritiesinthegraphite.
(xii)Thetemperature.
(xiii)Therateatwhichreactionproductsareremoved.
(xiv)Thefastneutrondamagetothegraphite.
(xv)Theamountofpre-oxidation(radiolyticorthermalburn-off).
(xvi)Thequantityofin-poredeposits.
(xvii)Theeffectivediffusioncoefficient.
ionRegimesandKinetics
Regime1
Atlowoxidationrates(generallyatrelativelylowtemperaturesfortheparticularoxidation
reaction)theoxidantmaybeatesntiallythesameconcentrationthroughoutthetransport
‘chemical’regimeischaracteridbythefactthatthereactionrate
islargelydeterminedbytheintrinsicreactivityofthegraphite(steps(ii)to(vi),above).
Differentpartsofthestructuremayreactatdifferentrates;thebinderbeingmorereactive
thanthegristparticlesandedgeatomsbeingmorereactivethanbasalplaneatoms,for
lsobethecathatthegascompositionvariesinnon-transportporesand
thattheeffectofagivengascompositionvarieswithporeshape(becauofgaspha
reactions).
Reactionbetweenairandpurenucleargraphitesisgenerallynotmeasurablebelow
about350°Candonlybecomessignificantintheregionof400°eofreactionis
-1.s-1atthistemperature(historicallyexpresdin
µg/gh;1µg/-1.s-1).Thechemicalregimethenextendstypicallyup
to550-600°C.
Theunitsforoxidationrateimplyaratelawoftheform
dm
dt
km=(A2.9)
where
m=graphitemass(kg)
t=time(s)
k=a(rate)constant(s-1)
However,forasolidreactingbody,ratelawsoftheformshownbelowwouldbe
expectedforreactionatthesuperficialsurface(withsomesimpleassumptions):
Slabs
dm
dt
k=(A2.10)
210
Cylinders
dm
dt
km=1
2(A2.11)
Spheres
dm
dt
km=2
3(A2.12)
Thereactionis,ofcour,ot,
however,berelatedtotheinitialopenporevolume(whichmightbeexpectedtobe
proportionaltographitemass)sincethereactionmusttakeplaceatthesurfaceofthepores.
Theratelawisthusonlysuperficiallysimilartoahomogeneousfirstordergaspha
expressionandcaremustbetakeninitsu,particularlyindescribingthetimedependenceof
graphiteburnoff.
Thevariationofreactionratewithtemperatureisofimportance:
kAe
E
RT=−
(A2.13)
where
Aisapre-exponentialfactor(s-1)
Eistheapparenttemperaturecoefficientofreaction(‘activationenergy’)(-1)
Risthegasconstant(-1.K-1)
-1.
Similarconsiderationsapplytoreactionwithcarbondioxideandwatervapour(H
2
O).
ThereactionwithCO
2
isoflessimportance,however,sinceitisnegligibleat625°C
(Thurlbeck,1962)anddoesnotpoaproblemevenatthehighestAGRinnersleeve
temperaturesof675°C(Prince,1976).Thereactionisalsoendothermic(equation(A2.4))
andsodoesnothavethesamesafetyimplicationsasthereactionwithair.
ThereactionwithH
2
OisofparticularimportanceinHTRreactors,becauofthe
(generallysmall)inleakagefromthesteamsideintothegascircuit,whereitcanreactwith
hepartialpressureofthewatervapourisavariableinthis
system,rateequationsoftheform
rAPn=(A2.14)
areapplied,where
r=thespecificreactionrate(-1.s-1)
A=a(rate)constant(s-1.(N.m-2)-1)
P=partialpressureofwatervapour(N.m-2)
Thereactionwithwatervapourisgenerallyinsignificantbelow800°Cand
approximatelyobeyquation(A2.14)withn=0.5overthetemperaturerange1000-1200°C.
ThekineticscanalsobedescribedbyaLangmuir-Hinshelwoodscheme(Walkeretal,1959;
Atkins,1987;Stairmand,1990).
Regime2
Inthisregime,thereactionratebecomeshighenoughforaccessofthegastothein-pore
211
structuretobesignificantlylimitedbydiffusioncontrol(steps(i)and(vii),above).Thiscan
air-graphitesystem,thisoccurs
approximatelyintherange600-900°‘activationenergy’ishalvedinthisregimeand
thekineticexpressionsinvolvetheeffectivediffusioncoefficientforthegraphite(Walkeret
al,1959;GibersonandWalker,1965).
Regime3
Thisisthemasstransferregime(Burnetteetal,1979;RaederandGulden,1989),where
reactionatthesuperficialsurfaceofthegraphiteissohighthatmostoftheoxidantis
consumedthere,theoxidantconcentrationgradientgenerallydevelopingacrossthelaminar
ctionrateisnowexpresdintermsofthesuperficialsurfaceareaofthe
graphite(kg.m-2.s-1)ngefrom
oneregimetoanothermaybeprogressiveandmode2mayappeartobemissinginsome
cas.
Twoother‘regimes’appeartrivial,butcanufullybedistinguished:
Regime4
Ifthereisafixedrateofingressofoxidanttothesystem,forexampleasaknownquantityof
impurityinthemake-upgas,therateofoxidationcannotexceedtherateofsupplyofoxidant
(ratebalance).Thepreferredsiteofanyresultingoxidationmaynotbeknown,however.
Regime5
Ifthesystemcontainsafixedamountofoxidant,forexamplethatremainingafterblowing
downandrechargingthecoolantgas,theextentofoxidationislimitedbytheamountof
oxidantavailable(massbalance).Neitherthelocation,northerateofreaction,maybe
knowninthisca.
sis
Thekineticsinthechemicalregimemaybefurthercomplicatedbycatalysis(McKee,1981).
Thecatalyst(impurity)particlesacttoincreathereactionratebyofferinganalternative
onratesareparticularlyincread
atlowertemperatures(thisleadstoa‘compensation’effect).
Asimplecatalyticmodelinvolvestheoxidationofmetalatoms(M)byoxygen,
followedbyreductionoftheoxidebycarbon:
½O
2
+M=MO(A2.15)
MO+C=CO+M(A2.16)
Thereactionmayproceedbya‘tunnelling’mechanism.
Reactioninhibitorsarealsoknown(McKee,1991)andsomesubstancesareabletoact
toeitherpromoteorinhibitreaction,perhapsbycompetingforactivesites(e.g.
water/oxygen).Boron(withphosphorus)isknownasaninhibitorforthermaloxidation,but
whenintercalatedintothegraphitestructurewillpromoteoxidation(Karraetal,1995)
212
(perhapsbymimickingfastneutrondamage).
ementsfortheInformation
Earlydesignsofgraphitemoderatedreactoroperatedwithairasthecoolantandtherewasa
requirementtounderstandboththelikelyongoingoxidationbehaviourofthegraphiteandits
ereactorsweresuperdedbycarbon
dioxidecooleddesigns,anunderstandingofthereactionofgraphitewithairremained
importantforthefollowingreasons:
(i)Safetycainformationrelevanttobothmajorandminoringressofairtothesystem
underfaultorotherconditions(Dodson,1960;NairnandWilkinson,1960;Blanchardand
Fitzgerald,1978).
(ii)Thepossiblerequirementstocarryoutdeliberateoxidationsto
(a)Removedepositsfromfuel.
(b)Openupthestructureoflowdiffusivitygraphitetoimproveinhibitor(e.g.
methane)access.
(c)Removedepositsfromfuelpinandheatexchangersurfacestoimproveheat
transfer.
(d)Estimatetheamountofdepositingraphitemoderatorandfuelsleevesby
differentialthermaloxidation(Welch,1972;OxleyandDymond,1972;BaguleyandLivey,
1972)(soastobeabletocorrecttheweightloss).
(e)Alterthestructureofexperimentalgraphitesincontrolledwaystoimprove
theoreticalknowledgeoftheinteractionbetweenreactivityandstructure.
ialMeasurementsandKnowledge
Thecomplexityofgraphiteoxidationbehaviourissuchthatthefollowingaregenerally
required:
(i)Goodstatisticaldataontherelevantoxidationratesforarangeofblocksandheats.
(ii)Anawarenessoftherelevantoxidationregimeandtheratelawswhicharelikelyto
apply.
(iii)Informationonthetemperaturecoefficientofreaction.
(iv)Informationormeasurementontheheatchangeonreaction.
(v)Theoreticalorexperimentalinformationonfactorsaffectingtheoxidationrate,suchas
fastneutrondamage,burn-up,depositionofpotentialcatalysts,etc.
(vi)Modellingknowledgetoextrapolatefromsmallscalesamples,orfullscaletests.
Assomegraphitereactorsarecomingtotheendoftheirlives,thereisanincreasing
requirementtocarryoutasssmentsforlongtermstorageordisposal(Wickhametal,1996).
Thepotentialoxidationbehaviourisalsoofconcerninthiscontext.
ledgements
Incompilingthisaccount,theauthorhasbeenparticularlygratefulforreviewsbyJohn
Stairmand(Stairmand,1990)andTonyWickhametal(Wickhametal,1996)whointurn
(Walkeretal,1959)andDubinin(Dubinin,1966).
Anyimportantomissionsaretheauthor’sown,however.
213
REFERENCES
[1]alChemistry,3rdedition,OxfordUniversityPress,783(1987).
[2]liedtoGraphite/CarbonDepositSystems-Paper
11,TheAttackRateoftheunderlyingGraphiteduringOxidationofIn-poreDeposits,
SymposiumonDifferentialThermalOxidationheldatBerkeleyNuclearLaboratories
(1972).
[3]ReactivityofWAGRModeratorandSleeve
Graphites,UKAEAReportWAGR/TC/P(78)21(1978).
[4]BurnetteR.D.,softheRateofSteamOxidation
ofGraphiteatHighGasVelocity,14thBiennialConferenceonCarbon,Pennsylvania
StateUniversity(1979).
[5]thofOxidationofGraphite:ATheoreticalApproach,UKAEA
ReportDEG148(CA)(1960).
[6]tryandPhysicsofCarbon,2(,Jr),MarcelDekker,
NewYork,51(1966).
[7]onofNuclearGraphitewithWaterVapour-Part
1:EffectofHydrogenandWaterVapourPartialPressures,BattelleNorthwestReport,
BNSA-181(1965).
[8]KarraM.,ZaldivarR.J,RellickG.S.,tutional
BoroninCarbonOxidation-InhibitororCatalyst?,Proc.22ndBiennialConferenceon
Carbon,SanDiego(1995).
[9]tryandPhysicsofCarbon,16(r,Jr),MarcelDekker,
NewYork,1(1981).
[10]tryandPhysicsofCarbon,23(r,Jr),MarcelDekker,
NewYork,173(1991).
[11]dictionofConditionsforSelf-sustainingGraphite
CombustioninAir,PaperGCM/UK/11,US/UKCompatibilityConference(1960).
[12]liedtoGraphite/CarbonDepositSystems-Paper8,
DTOStudiesofIrradiatedGraphiteusingGasChromatography,Symposiumon
DifferentialThermalOxidationheldatBerkeleyNuclearLaboratories(1972).
[13]enceintheDesignofGraphiteModeratorStructures,Paperprentedto
theNuclearEngineeringSociety(1976).
[14]AnalysperformedbyNET,IAEATechnical
CommitteeMeetingonFusionReactorSafety,Jackson,Wyoming(1989).
[15]teOxidation-ALiteratureSurvey,AEATechnologyReport
AEA-FUS-83(1990).
[16]idCompatibilityReviewofReactorMaterialsforCO
2
-cooled
GraphiteModeratedReactors,TRGReport267(W)(1962).
[17]WalkerP.L.,esinCatalysis,11,123(1959).
[18]liedtoGraphite/CarbonDepositSystems-Paper1,Principlesand
Problems,SymposiumonDifferentialThermalOxidationheldatBerkeleyNuclear
Laboratories(1972).
[19]WickhamA.J.,MarsdenB.J.,sibilityand
ConquencesofGraphiteCoreDegradationduring‘CareandMaintenance’and
‘Safestore’,AEATechnologyReportAEA/16423595/R/001(1996).
214
本文发布于:2022-12-28 12:12:46,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/46553.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |