Whatisageneticalgorithm?
Methodsofreprentation
Methodsoflection
Methodsofchange
Otherproblem-solvingtechniques
Concilystated,ageneticalgorithm(orGAforshort)is
aprogrammingtechniquethatmimicsbiologicalevolutionasa
specificproblemtosolve,the
inputtotheGAisatofpotentialsolutionstothatproblem,
encodedinsomefashion,andametriccalledafitnessfunction
candidatesmaybesolutionsalreadyknowntowork,withtheaim
oftheGAbeingtoimprovethem,butmoreoftentheyaregenerated
atrandom.
TheGAthenevaluateachcandidateaccordingtothefitness
lofrandomlygeneratedcandidates,ofcour,
mostwillnotworkatall,r,
purelybychance,afewmayholdpromi-theymayshowactivity,
evenifonlyweakandimperfectactivity,towardsolvingthe
problem.
Thepromisingcandidatesarekeptandallowedtoreproduce.
Multiplecopiesaremadeofthem,butthecopiesarenotperfect;
digitaloffspringthengoontothenextgeneration,forminga
newpoolofcandidatesolutions,andaresubjectedtoacond
andidatesolutionswhichwere
worned,ormadenobetter,bythechangestotheircodeareagain
deleted;butagain,purelybychance,therandomvariations
introducedintothepopulationmayhaveimprovedsomeindividuals,
makingthemintobetter,morecompleteormoreefficient
hewinningindividuals
arelectedandcopiedoverintothenextgenerationwithrandom
changes,ectationisthatthe
averagefitnessofthepopulationwillincreaeachround,and
sobyrepeatingthisprocessforhundredsorthousandsofrounds,
verygoodsolutionstotheproblemcanbediscovered.
Asastonishingandcounterintuitiveasitmayemtosome,
geneticalgorithmshaveproventobeanenormouslypowerfuland
successfulproblem-solvingstrategy,dramaticallydemonstrating
calgorithmshave
beenudinawidevarietyoffieldstoevolvesolutionsto
problemsasdifficultasormoredifficultthanthofacedby
er,thesolutionstheycomeupwithare
oftenmoreefficient,moreelegant,ormorecomplexthananything
cas,genetic
algorithmshavecomeupwithsolutionsthatbafflethe
programmerswhowrotethealgorithmsinthefirstplace!
Methodsofreprentation
Beforeageneticalgorithmcanbeputtoworkonanyproblem,
amethodisneededtoencodepotentialsolutionstothatproblem
monapproachisto
encodesolutionsasbinarystrings:quencesof1'sand0's,
wherethedigitateachpositionreprentsthevalueofsome
r,similarapproachistoencode
solutionsasarraysofintegersordecimalnumbers,witheach
positionagainreprentingsomeparticularaspectofthe
proachallowsforgreaterprecisionand
complexitythanthecomparativelyrestrictedmethodofusing
binarynumbersonlyandoften"isintuitivelyclortothe
problemspace"(FlemingandPurshou2002,p.1228).
Thistechniquewasud,forexample,intheworkofSteffen
Schulze-Kremer,whowroteageneticalgorithmtopredictthe
three-dimensionalstructureofaproteinbadonthequence
ofaminoacidsthatgointoit(Mitchell1996,p.62).
Schulze-Kremer'sGAudreal-valuednumberstoreprentthe
so-called"torsionangles"betweenthepeptidebondsthatconnect
aminoacids.(Aproteinismadeupofaquenceofbasicbuilding
blockscalledaminoacids,whicharejoinedtogetherlikethe
ltheaminoacidsarelinked,theprotein
foldsupintoacomplexthree-dimensionalshapebadonwhich
aminoacidsattracteachotherandwhichonesrepeleachother.
Theshapeofaproteindeterminesitsfunction.)Genetic
algorithmsfortrainingneuralnetworksoftenuthismethodof
encodingalso.
AthirdapproachistoreprentindividualsinaGAas
stringsofletters,whereeachletteragainstandsforaspecific
mpleofthistechniqueisHiroaki
Kitano's"grammaticalencoding"approach,whereaGAwasputto
thetaskofevolvingasimpletofrulescalledacontext-free
grammarthatwasinturnudtogenerateneuralnetworksfora
varietyofproblems(Mitchell1996,p.74).
Thevirtueofallthreeofthemethodsisthattheymake
iteasytodefineoperatorsthatcautherandomchangesinthe
lectedcandidates:flipa0toa1orviceversa,addorsubtract
fromthevalueofanumberbyarandomlychonamount,orchange
onelettertoanother.(SeethectiononMethodsofchangefor
moredetailaboutthegeneticoperators.)Anotherstrategy,
developedprincipallybyJohnKozaofStanfordUniversityand
calledgeneticprogramming,reprentsprogramsasbranching
datastructurescalledtrees(Kozaetal.2003,p.35).Inthis
approach,randomchangescanbebroughtaboutbychangingthe
operatororalteringthevalueatagivennodeinthetree,or
replacingonesubtreewithanother.
Figure1:Threesimpleprogramtreesofthekindnormallyud
hematicalexpressionthateachone
reprentsisgivenunderneath.
Itisimportanttonotethatevolutionaryalgorithmsdonotneed
toreprentcandidatesolutionsasdatastringsoffixedlength.
Somedoreprenttheminthisway,butothersdonot;forexample,
Kitano'sgrammaticalencodingdiscusdabovecanbeefficiently
scaledtocreatelargeandcomplexneuralnetworks,andKoza's
geneticprogrammingtreescangrowarbitrarilylargeasnecessary
tosolvewhateverproblemtheyareappliedto.
Methodsoflection
Therearemanydifferenttechniqueswhichageneticalgorithm
canutolecttheindividualstobecopiedoverintothenext
generation,butlistedbelowaresomeofthemostcommonmethods.
Someofthemethodsaremutuallyexclusive,butotherscanbe
andoftenareudincombination.
Elitistlection:Themostfitmembersofeachgeneration
areguaranteedtobelected.(MostGAsdonotupureelitism,
butinsteaduamodifiedformwherethesinglebest,orafew
ofthebest,individualsfromeachgenerationarecopiedintothe
nextgenerationjustincanothingbetterturnsup.)
Fitness-proportionatelection:Morefitindividualsare
morelikely,butnotcertain,tobelected.
Roulette-wheellection:Aformoffitness-proportionate
lectioninwhichthechanceofanindividual'sbeinglected
isproportionaltotheamountbywhichitsfitnessisgreateror
lessthanitscompetitors'fitness.(Conceptually,thiscanbe
reprentedasagameofroulette-eachindividualgetsaslice
ofthewheel,butmorefitonesgetlargerslicesthanlessfit
elisthenspun,andwhicheverindividual"owns"the
ctiononwhichitlandachtimeischon.)
Scalinglection:Astheaveragefitnessofthepopulation
increas,thestrengthofthelectivepressurealsoincreas
thod
canbehelpfulinmakingthebestlectionlateronwhenall
individualshaverelativelyhighfitnessandonlysmall
differencesinfitnessdistinguishonefromanother.
Tournamentlection:Subgroupsofindividualsarechon
fromthelargerpopulation,andmembersofeachsubgroupcompete
eindividualfromeachsubgroupis
chontoreproduce.
Ranklection:Eachindividualinthepopulationisassigned
anumericalrankbadonfitness,andlectionisbadonthis
advantageofthismethodisthatitcanpreventveryfit
individualsfromgainingdominanceearlyattheexpenofless
fitones,whichwouldreducethepopulation'sgeneticdiversity
andmighthinderattemptstofindanacceptablesolution.
Generationallection:Theoffspringoftheindividuals
lectedfromeachgenerationbecometheentirenextgeneration.
Noindividualsareretainedbetweengenerations.
Steady-statelection:Theoffspringoftheindividuals
lectedfromeachgenerationgobackintothepre-existinggene
pool,replacingsomeofthelessfitmembersoftheprevious
dividualsareretainedbetweengenerations.
Hierarchicallection:Individualsgothroughmultiple
-levelevaluationsare
fasterandlessdiscriminating,whilethothatsurviveto
antageof
thismethodisthatitreducesoverallcomputationtimebyusing
faster,lesslectiveevaluationtoweedoutthemajorityof
individualsthatshowlittleornopromi,andonlysubjecting
thowhosurvivethisinitialtesttomorerigorousandmore
computationallyexpensivefitnesvaluation.
Methodsofchange
Oncelectionhaschonfitindividuals,theymustbe
randomlyalteredinhopesofimprovingtheirfitnessforthenext
retwobasicstrategiestoaccomplishthis.
mutationin
livingthingschangesonegenetoanother,somutationina
geneticalgorithmcaussmallalterationsatsinglepointsin
anindividual'scode.
Thecondmethodiscalledcrossover,andentailschoosing
twoindividualstoswapgmentsoftheircode,producing
artificial"offspring"thatarecombinationsoftheirparents.
Thisprocessisintendedtosimulatetheanalogousprocessof
recombinationthatoccurstochromosomesduringxual
formsofcrossoverincludesingle-point
crossover,inwhichapointofexchangeistatarandomlocation
inthetwoindividuals'genomes,andoneindividualcontributes
allitscodefrombeforethatpointandtheothercontributesall
itscodefromafterthatpointtoproduceanoffspring,and
uniformcrossover,inwhichthevalueatanygivenlocationin
theoffspring'sgenomeiitherthevalueofoneparent'sgenome
atthatlocationorthevalueoftheotherparent'sgenomeatthat
location,chonwith50/50probability.
Figure2:vediagrams
illustratetheeffectofeachofthegeneticoperatorson
erdiagram
showstwoindividualsundergoingsingle-pointcrossover;the
pointofexchangeistbetweenthefifthandsixthpositions
inthegenome,producinganewindividualthatisahybridofits
onddiagramshowsanindividualundergoing
mutationatposition4,changingthe0atthatpositioninits
genometoa1.
Otherproblem-solvingtechniques
Withtheriofartificiallifecomputingandthe
developmentofheuristicmethods,othercomputerized
problem-solvingtechniqueshaveemergedthatareinsomeways
ctionexplainssomeof
thetechniques,inwhatwaystheyrembleGAsandinwhatways
theydiffer.
Neuralnetworks
Aneuralnetwork,orneuralnetforshort,isaproblem-solvingmethodbad
l
networkconsistsoflayersofprocessingunitscallednodesjoinedby
directionallinks:oneinputlayer,oneoutputlayer,andzeroormorehidden
ialpatternofinputisprentedtotheinputlayerof
theneuralnetwork,andnodesthatarestimulatedthentransmitasignaltothe
umofallthe
inputnteringoneofthevirtualneuronsishigherthanthatneuron's
so-calledactivationthreshold,thatneuronitlfactivates,andpassonits
ternofactivationtherefore
spreadsforwarduntilitreachestheoutputlayerandistherereturnedasa
inthenervoussystemofbiological
organisms,neuralnetworkslearnandfine-tunetheirperformanceovertime
viarepeatedroundsofadjustingtheirthresholdsuntiltheactualoutput
ocesscanbesupervid
byahumanexperimenterormayrunautomaticallyusingalearningalgorithm
(Mitchell1996,p.52).Geneticalgorithmshavebeenudbothtobuildandto
trainneuralnetworks.
Figure3:Asimplefeedforwardneuralnetwork,withoneinput
layerconsistingoffourneurons,onehiddenlayerconsistingof
threeneurons,andoneoutputlayerconsistingoffourneurons.
Thenumberoneachneuronreprentsitsactivationthreshold:
diagramshowstheneuralnetworkbeingprentedwithaninput
stringandshowshowactivationspreadsforwardthroughthe
networktoproduceanoutput.
Hill-climbing
Similartogeneticalgorithms,thoughmoresystematicandlessrandom,a
hill-climbingalgorithmbeginswithoneinitialsolutiontotheproblemathand,
ingisthenmutated,andifthemutation
resultsinhigherfitnessforthenewsolutionthanforthepreviousone,the
newsolutioniskept;otherwi,orithm
isthenrepeateduntilnomutationcanbefoundthatcausanincreainthe
currentsolution'sfitness,andthissolutionisreturnedastheresult(Kozaetal.
2003,p.59).(Tounderstandwherethenameofthistechniquecomesfrom,
imaginethatthespaceofallpossiblesolutionstoagivenproblemis
tof
solutionsthatarebetterarehigherinaltitude,forminghillsandpeaks;tho
thatareworarelowerinaltitude,formingvalleys.A"hill-climber"isthen
analgorithmthatstartsoutatagivenpointonthelandscapeandmoves
inexorablyuphill.)Hill-climbingiswhatisknownasagreedyalgorithm,
meaningitalwaysmakesthebestchoiceavailableateachstepinthehope
rast,methods
suchasgeneticalgorithmsandsimulatedannealing,discusdbelow,arenot
greedy;themethodssometimesmakesuboptimalchoicesinthehopesthat
theywillleadtobettersolutionslateron.
Simulatedannealing
Anotheroptimizationtechniquesimilartoevolutionaryalgorithmsisknown
aborrowsitsnamefromtheindustrialprocess
ofannealinginwhichamaterialisheatedtoaboveacriticalpointtosoftenit,
thengraduallycooledinordertoeradefectsinitscrystallinestructure,
producingamorestableandregularlatticearrangementofatoms(Hauptand
Haupt1998,p.16).Insimulatedannealing,asingeneticalgorithms,thereisa
fitnessfunctionthatdefinesafitnesslandscape;however,ratherthana
populationofcandidatesasinGAs,thereisonlyonecandidatesolution.
Simulatedannealingalsoaddstheconceptof"temperature",aglobal
stepofthe
algorithm,thesolutionmutates(whichiquivalenttomovingtoanadjacent
pointofthefitnesslandscape).Thefitnessofthenewsolutionisthen
comparedtothefitnessoftheprevioussolution;ifitishigher,thenew
i,thealgorithmmakesadecisionwhethertokeepor
emperatureishigh,asitisinitially,
evenchangesthatcausignificantdecreasinfitnessmaybekeptandud
asthebasisforthenextroundofthealgorithm,butastemperaturedecreas,
thealgorithmbecomesmoreandmoreinclinedtoonlyaccept
y,thetemperaturereacheszeroandthe
system"freezes";whateverconfigurationitisinatthatpointbecomesthe
tedannealingisoftenudforengineeringdesign
applicationssuchasdeterminingthephysicallayoutofcomponentsona
computerchip(Kirkpatrick,GelattandVecchi1983).
本文发布于:2022-12-28 05:38:32,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/44961.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |