ReciprocalRecommenderSystemforOnlineDating
LuizPizzato,TomekRej,ThomasChung,IrenaKoprinska,KalinaYacefandJudyKay
SchoolofInformationTechnologies
UniversityofSydney,NSW2006,Australia
{e}@
ABSTRACT
Reciprocalrecommenderisaclassofrecommendersystemsthat
isimportantfortaskswherepeopleareboththesubjectandthe
objectoftherecommendation;
haveimplementedRECON,areciprocalrecommenderforonline
dating,andwehaveevaluateditonamajordatingwebsite.
Resultsshowanimprovedsuccessrateforrecommendationsthat
considerreciprocityincomparisontorecommendationsthatonly
considerthepreferencesoftheursreceivingthe
recommendations.
CategoriesandSubjectDescriptors
H.3.3[InformationStorageandRetrieval]:InformationSearch
andRetrieval–Informationfiltering
GeneralTerms
Algorithms,Experimentation
Keywords
Recommendersystems,Onlinedating,Reciprocity
UCTION
hasbeenevaluatedonalargedatatfromamajorAustralian
ocalrecommenders[1]recommendpeople
topeopleandasuccessfulrecommendationonlyoccurswhen
tiontoonlinedating,other
importantapplicationsofreciprocalrecommendersinclude
matchingemployerswithjobapplicants,matchingmenteeswith
mentorsandidentificationofbusinesspartners.
Areciprocalrecommenderdoesnotimplysocialmatching,butit
doesrelatetocomputer-humaninteractionissuesraidby
TerveenandMcDonald[2]suchasprivacy,trust,relationand
interpersonalattraction.
Urscreateonlineprofileswhichtypicallyconsistofa
predefinedlistofattributesaboutthemlvesandtheirideal
xpressinterestinanotherurbyndinga
predefinedmessage,suchas“Ilikeyou,doyouwanttotalk?”.
Thereceivercanreplywithapositiveornegativemessage,e.g.
“Lovedthemessage,canyoundmeanemail.”or“Thanks,but
Idon’tthinkwearerightforeachother”.
RECONusthepredefinedmessagestolearntheur’s
filtersoutcandidateswhodonotsatisfythe
ur’spreferencesandrankstheremainingcandidatesusinga
rankingcriterion.
RECONpromotescandidateswhoarelikelytoreciprocatethe
ur’smessagebyrespondingpositivelytohim/her,
willappearatthetopofurU'srecommendationlistifUappears
inV'onallyRECONsupports
variousrankingcriteriabadonpopularity,responrateandlast
sopossibletoorderthecandidatesbyacompatibility
score,whichisbadonhowwellthecandidatesmatchtheur's
ecandidatesareranked,RECONdisplaysthe
top-NcandidateswhereNisaurdefinedparameter.
TION
WehaveevaluatedRECONusingurinteractiondatafromasix
weeksperiod,wherethefirstfourweekswereudastraining
iningdata
consistedof1.4millionmessagesntbyover90,000urs.
BytakingintoaccountreciprocityRECONimprovedthesuccess
rateofthetop-10recommendationsfrom23%to42%.
Reciprocityalsohelpedwiththecoldstartproblemprovidingan
improvementofmorethan60%insuccessratefornewurs.
Wealsoobrvedlargeimprovementsinrecall,suchasan
improvementof83%forthetop-100recommendations(from
5.90%to10.80%).
MANCE
ThetimerequiredtorunRECONdependsondifferentstagesof
alculatesthepreferencesformorethan
90,000ursandalltheirmessagesinabout10minutesusingtwo
hepreferences,it
createsalistofrecommendationsforallursinabout2hours.
MMARY
Ourdemoprovidesaninterfacetoviewrecommendations
interfaceconsistsoftwoparts:Apartdisplayingtheprofile
informationoftheurforwhomtherecommendationsare
generated,andapartdisplayingtherecommendationsgenerated.
Aurisspecifiedbyauniquenumber,ur_erfaceisa
webpageandrequiresnothingmorethanabrowrtou.
Copyrightisheldbytheauthor/owner(s).
RecSys’10,September26–30,2010,Barcelona,Spain.
ACM978-1-60558-906-0/10/09.
partprents
informationaboutanexampleurUforwhomrecommendations
aremade;thisincludesasummaryofU’spreferencesbadon
themessagesntandtheidealpartnerprofile,andalsoa
summaryofU’tompartshowsthe
generatedrecommendationsforUandiftheyarelikelytobe
mbolinthelowerleftofarecommendedur
ck
symbolindicatesthatVhasshowninterestinUbyreplying
positivelytoU'smessagewhileagreencrossandblackquestion
ownlistallowsthe
lectionofdifferentrankingcriteria.
Toviewtherecommendationsforaparticularur(example
ur),atextfieldisprovidedtoinputtheur_
processing,theexampleur'sinformationisdisplayedfollowed
mpleur'sinformationincludes
statisticsabouthispreviousinteractionswithotherursandhis
statedpreferencesforthetrainingperiodudbythe
ommendedurshaveabasicprofileand
previousinteractionswiththeexampleurlisted,withalinkto
showapopupboxdisplayingdetailedprofileinformationforthe
particularur.
Thereareveraloptionsforrankingoftherecommendationsand
berof
recommendationstobegeneratedcanalsobelectedsimilarly.
Alinkisalsoprovidedwitheachrecommendedurtoviewthe
anotherwayto
specifyaurtogeneraterecommendationsforwithoutusingthe
ur_id.
TERINFORMATION
LuizPizzato(/People/LuizPizzato)isa
postdoctoralrearcherattheComputerHumanAdapted
Interaction(CHAI)rearchgroupattheUniversityofSydney.
HisworkispartoftheSmartServicesCRCandinvolves
personalization,
activelyinvolvedintherearch,developmentand
implementationoftherecommendersystemforonlinedating
earchinterestsareinInformationRetrievaland
LanguageTechnology.
shotofRECON
LEDGMENTS
TherearchwasfundedbytheSmartServicesCRC.
NCES
[1]o,,,,skaandJ.
eedingsofthe
UMAP-20108thWorkshoponIntelligentTechniquesfor
WebPersonalization,Hawaii,USA
[2]Matching:A
ransactionson
Computer-HumanInteraction,,12(3):401-434
本文发布于:2022-12-27 04:12:30,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/38028.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |