社媒推送因人而异,驱动政治两极分化
作者:罗伯特·艾略特·史密斯
来源:《英语世界》2020年第09期
Theelectionasoniswindingup,andmysocialmediaisonceagainawashwithpolitical
nesstream:“WarrenandBernie’sawkwardtruce...”,“Trumpeshisba
growing...”and“TheFed’srealmessage...”.ThisistheAmericaIetoday.
Thetroubleis,it’personally-curated
antlyshiftingmirage,evolvinginreal-time,dependingonmylikesand
dislikes,whatIclickon,andwhatIshare.
ArecentPewRearchCenterstudyfoundblacksocialmediaursaremorelikelytoerace-
llerreportsuggestsRussianeffortsagainstHillaryClintontargetedBernie
ber2016,BradParscale,thenPresidentTrump’s2016digital
director,toldBloombergNewsthathetargetedFacebookandmediapostsatpossibleClinton
supporterssothattheywouldsittheelectionout.
Parscale―who,asofearlyAugust,hasspentmore($9.2million)onFacebookadsfor
Trump2020thanthefourtopDemocraticcandidatescombined―saidthatin2016hetypicallyran
50,000advariationachday,micro-targetingdifferentgmentsoftheelectorate.
Algorithmsareprejudiced
Whilepoliticaloperativexploitingyellowjournalismisnothingnew,thecouplingoftheir
manipulatthmsarenow
themostpowerfulcuratorsofinformation,whoactionnablesuchmanipulationbycreatingour
fracturedinformationalmultiver.
ysoundextreme,butletmeexplain.
InanalysconductedbymylfandcolleaguesatUniversityCollegeLondon(UCL),we
modeledthebehaviorofsocialnetworks,usingbinarysignals(1sand0s)pasdbetween
simplified“agents”thatreprentedpeoplesharingofopinionsaboutadivisiveissue(saypro-life
versuspro-choiceorthemeritsofbuildingawallornot).
Most“agents”inthismodeldeterminethesignalstheybroadcastbadonthesignalsthey
receivefromthosurroundingthem(aswedosharingnewsandstoriesonline).Butweaddedina
smallnumberofagentswecalled“motivatedreasoners,”who,regardlessofwhattheyhear,only
broadcasttheirownpre-determinedopinion.
Ourresultsshowedthatineveryca,motivatedreasonerscametodominatethe
conversation,drivingallotheragentstofixedopinions,ggests
that“echochambers”areaninevitableconquenceofsocialnetworksthatincludemotivated
reasoners.
Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy
theoryindustrialcomplex.
Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,
,inreality,themostmotivated
reasonersonlinearethealgorithmsthatcurateouronlinenews.
Howtechnologygeneralizes
Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin
achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby
arenotonlyeconomicallysingle-minded,they
arealsostatisticallysimple-minded.
Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor
“unprofessionalhair”returningimagespredominantlyofblackwomen.
Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould
havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof
blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”
Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.
Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing
newsrooms,‘fakenews.’ButIstillwantin.
HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor
algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,
issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.
Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany
ifythiffect.
Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations
wtheypar
theincomprehensible“BigData”neers
likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.
Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,
religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis
informationalgregation,notunlikepreviousracialandsocialgregation.
Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy
theoryindustrialcomplex.
Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,
,inreality,themostmotivated
reasonersonlinearethealgorithmsthatcurateouronlinenews.
Howtechnologygeneralizes
Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin
achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby
arenotonlyeconomicallysingle-minded,they
arealsostatisticallysimple-minded.
Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor
“unprofessionalhair”returningimagespredominantlyofblackwomen.
Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould
havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof
blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”
Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.
Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing
newsrooms,‘fakenews.’ButIstillwantin.
HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor
algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,
issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.
Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany
ifythiffect.
Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations
wtheypar
theincomprehensible“BigData”neers
likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.
Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,
religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis
informationalgregation,notunlikepreviousracialandsocialgregation.
Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy
theoryindustrialcomplex.
Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,
,inreality,themostmotivated
reasonersonlinearethealgorithmsthatcurateouronlinenews.
Howtechnologygeneralizes
Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin
achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby
arenotonlyeconomicallysingle-minded,they
arealsostatisticallysimple-minded.
Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor
“unprofessionalhair”returningimagespredominantlyofblackwomen.
Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould
havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof
blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”
Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.
Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing
newsrooms,‘fakenews.’ButIstillwantin.
HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor
algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,
issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.
Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany
ifythiffect.
Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations
wtheypar
theincomprehensible“BigData”neers
likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.
Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,
religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis
informationalgregation,notunlikepreviousracialandsocialgregation.
本文发布于:2022-12-27 03:17:47,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/37771.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |