conspiracy theory

更新时间:2022-12-27 03:17:47 阅读: 评论:0


2022年12月27日发(作者:长脸发型设计)

社媒推送因人而异,驱动政治两极分化

作者:罗伯特·艾略特·史密斯

来源:《英语世界》2020年第09期

Theelectionasoniswindingup,andmysocialmediaisonceagainawashwithpolitical

nesstream:“WarrenandBernie’sawkwardtruce...”,“Trumpeshisba

growing...”and“TheFed’srealmessage...”.ThisistheAmericaIetoday.

Thetroubleis,it’personally-curated

antlyshiftingmirage,evolvinginreal-time,dependingonmylikesand

dislikes,whatIclickon,andwhatIshare.

ArecentPewRearchCenterstudyfoundblacksocialmediaursaremorelikelytoerace-

llerreportsuggestsRussianeffortsagainstHillaryClintontargetedBernie

ber2016,BradParscale,thenPresidentTrump’s2016digital

director,toldBloombergNewsthathetargetedFacebookandmediapostsatpossibleClinton

supporterssothattheywouldsittheelectionout.

Parscale―who,asofearlyAugust,hasspentmore($9.2million)onFacebookadsfor

Trump2020thanthefourtopDemocraticcandidatescombined―saidthatin2016hetypicallyran

50,000advariationachday,micro-targetingdifferentgmentsoftheelectorate.

Algorithmsareprejudiced

Whilepoliticaloperativexploitingyellowjournalismisnothingnew,thecouplingoftheir

manipulatthmsarenow

themostpowerfulcuratorsofinformation,whoactionnablesuchmanipulationbycreatingour

fracturedinformationalmultiver.

ysoundextreme,butletmeexplain.

InanalysconductedbymylfandcolleaguesatUniversityCollegeLondon(UCL),we

modeledthebehaviorofsocialnetworks,usingbinarysignals(1sand0s)pasdbetween

simplified“agents”thatreprentedpeoplesharingofopinionsaboutadivisiveissue(saypro-life

versuspro-choiceorthemeritsofbuildingawallornot).

Most“agents”inthismodeldeterminethesignalstheybroadcastbadonthesignalsthey

receivefromthosurroundingthem(aswedosharingnewsandstoriesonline).Butweaddedina

smallnumberofagentswecalled“motivatedreasoners,”who,regardlessofwhattheyhear,only

broadcasttheirownpre-determinedopinion.

Ourresultsshowedthatineveryca,motivatedreasonerscametodominatethe

conversation,drivingallotheragentstofixedopinions,ggests

that“echochambers”areaninevitableconquenceofsocialnetworksthatincludemotivated

reasoners.

Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy

theoryindustrialcomplex.

Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,

,inreality,themostmotivated

reasonersonlinearethealgorithmsthatcurateouronlinenews.

Howtechnologygeneralizes

Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin

achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby

arenotonlyeconomicallysingle-minded,they

arealsostatisticallysimple-minded.

Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor

“unprofessionalhair”returningimagespredominantlyofblackwomen.

Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould

havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof

blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”

Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.

Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing

newsrooms,‘fakenews.’ButIstillwantin.

HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor

algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,

issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.

Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany

ifythiffect.

Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations

wtheypar

theincomprehensible“BigData”neers

likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.

Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,

religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis

informationalgregation,notunlikepreviousracialandsocialgregation.

Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy

theoryindustrialcomplex.

Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,

,inreality,themostmotivated

reasonersonlinearethealgorithmsthatcurateouronlinenews.

Howtechnologygeneralizes

Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin

achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby

arenotonlyeconomicallysingle-minded,they

arealsostatisticallysimple-minded.

Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor

“unprofessionalhair”returningimagespredominantlyofblackwomen.

Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould

havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof

blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”

Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.

Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing

newsrooms,‘fakenews.’ButIstillwantin.

HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor

algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,

issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.

Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany

ifythiffect.

Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations

wtheypar

theincomprehensible“BigData”neers

likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.

Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,

religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis

informationalgregation,notunlikepreviousracialandsocialgregation.

Itgoesdeeperthanyouthink:TwoyearsafterCharlottesville1,I’mfightingtheconspiracy

theoryindustrialcomplex.

Sowhoarethemotivatedreasoners?Youmightassumetheyarepoliticalcampaigners,

,inreality,themostmotivated

reasonersonlinearethealgorithmsthatcurateouronlinenews.

Howtechnologygeneralizes

Intheonlinemediaeconomy,theartificialintelligenceinalgorithmsaresingle-mindedin

achievingtheirprofit-drivenagendasbyensuringthemaximumfrequencyofhumaninteractionby

arenotonlyeconomicallysingle-minded,they

arealsostatisticallysimple-minded.

Take,forexample,the2016storyinTheGuardianaboutGooglearchesfor

“unprofessionalhair”returningimagespredominantlyofblackwomen.

Doesthisrevealadeepsocialbiastowardsracismandxism?Toconcludethis,onewould

havetobelievethatpeopleareusingtheterm“unprofessionalhair”inclocorrelationwithimagesof

blackwomentosuchanextentastosuggestmostpeoplefeeltheirhairstylesdefine“unprofessional.”

Regardlessofsocietalbias(whichcertainlyexists),thisemsdoubtful.

Itisn’tallbadnewsfornewspapers:I’majournalismstudentinaneraofclosing

newsrooms,‘fakenews.’ButIstillwantin.

HavingworkedinAIfor30years,Iknowitisprobablymorestatisticallyreliablefor

algorithmstorecognizeblackwomen’shairstylesthanthoofblackmen,whitewomen,

issimplyanaspectofhowalgorithms“e,”byusingoverallfeaturesofcolor,shape,andsize.

Justaswithreal-worldracism,resortingtosimplefeaturesiasierforalgorithmsthanderivingany

ifythiffect.

Tobeprejudicedmeanstopre-judgeonsimplifiedfeatures,andthendrawgeneralizations

wtheypar

theincomprehensible“BigData”neers

likemeexplicitlyprogramgeneralizationasagoalofthealgorithmswedesign.

Giventhesimplifyingfeaturesthatalgorithmsu(gender,race,politicalpersuasion,

religion,age,etc.)andthestatisticalgeneralizationstheydraw,thereal-lifeconquenceis

informationalgregation,notunlikepreviousracialandsocialgregation.

本文发布于:2022-12-27 03:17:47,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/37771.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:norman rockwell
下一篇:exhausted
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图