State-of-the-artof
windenergyincoldclimates
,nen,n,
ug,y,-Gould,
x,a,in
April,2003
ABSTRACT
Windturbinesincoldclimatesrefertositesthathaveeithericingeventsorlow
ational
EnergyAgency,IEAR&DWindhasstartedanewannex,WindEnergyinCold
aninternationalcollaborationongatheringandprovidinginformation
listomonitor
reliabilityofstandardandadaptedtechnologyandestablishguidelinesforapplying
report,thestate-of-the-artofarcticwindenergyis
prented:knowledgeonclimaticconditionsandresources,technicalsolutionsinu
andoperationalexperienceofwindturbinesincoldclimates.
5
CONTENTS
1Introduction..................................................................................................................8
2Windturbinesincoldclimates..................................................................................10
2.1NorthernEurope...............................................................................................10
2.2CentralEurope..................................................................................................12
2.3NorthernAmerica.............................................................................................12
2.4Asia...................................................................................................................13
3Knowledgeonclimaticconditions.............................................................................14
3.1Measurements...................................................................................................15
3.1.1Windconditions..........................................................................................15
3.1.2Icingconditions..........................................................................................18
3.1.3Othermeteorologicalparameters................................................................19
3.2Modelling.........................................................................................................20
3.2.1PhysicalModels..........................................................................................20
3.2.2Empirical/StatisticalModels.......................................................................21
3.2.3IcingTypesandDescriptionofCalculationMethods................................21
3.2.4Icingrate.....................................................................................................22
3.2.5TURBICEandLEWICE............................................................................22
3.3Maps.................................................................................................................24
4Technicalsolutionsinu..........................................................................................28
4.1Technicalsolutionsforicing............................................................................28
4.1.1Sensors/Instruments....................................................................................28
4.1.2Blades.........................................................................................................28
4.1.3Othercomponents.......................................................................................30
4.2Technicalsolutionsforcoldclimates...............................................................30
4.2.1Materialsandlubricants..............................................................................30
4.2.2Heatingofcomponents...............................................................................31
4.3Operationalsolutionsforcoldclimates............................................................31
4.4O&Mconstraints..............................................................................................32
5Operationalexperience..............................................................................................33
5.1Operationalexperienceinicingconditions......................................................33
5.2Operationalexperienceinlowtemperatures....................................................34
5.3Finland..............................................................................................................34
5.4Sweden.............................................................................................................36
6
5.5Norway.............................................................................................................43
5.6Switzerland.......................................................................................................44
5.7USA..................................................................................................................44
5.8Canada..............................................................................................................45
6Existingstandards,requirementsandrecommendations...........................................47
6.1Windturbines...................................................................................................47
6.2Resourceestimationandpowerperformancemeasurements...........................47
7Summary....................................................................................................................48
7
1INTRODUCTION
In2001,theInternationalEnergyAgency(IEA)R&DWindProgrammestartedanew
annex,numberXIX,ternational
collaborationbetweentheparticipatingcountrieshasasobjectivestogatheroperational
experienceofwindturbinesandmeasurementcampaignsinicingorcoldclimatesto
elisto
formulatesitecategoriesbadonclimatologicalconditionsandsiteinfrastructureand
thenlinkthewindturbinetechnologiesandoperationalstrategiestothecategories.
Thiswillgiveguidelinestooperatorsandmanufacturersoperatingwindturbinesincold
climates.
Informationisgatheredanddisminatedontheprojectwebsite/.
TheoperatingagentoftheannexisTechnicalRearchCentreofFinlandVTTand
participatinginstitutesareFOI/FFAfromSweden,KjellerVindteknikkfromNorway,
RisøNationalLaboratoriesfromDenmark,theNationalRenewableEnergyLaboratory
(NREL)fromtheUSA,ENCOfromSwitzerlandandNaturalResourcesCanada[1].
Atthemomenttherearearelativelysmallnumberofwindpowerprojectsinthecold
climate,howeverthisglobalmarketgmentistimatedtobesubstantial,althoughno
oesemtobelackof
informationregardingtheoperationalexperienceandexactclimaticconditionsrelevant
tositesincoldclimates,especiallywhenriskoficingisconcerned.
Inaddition,whensitingwindturbinesincoldclimates,theasssmentoftheclimatic
conditions,theirimpactonturbineproductionandeconomy(reliability,O&Mcosts)
havetobemade(Fig.1).Generallyinformationabouttheaverageandminimum
temperaturesonperspectivesitesisusuallyavailablehowevericingfrequencyismore
tIEAandotherinternationalstandardssimplystatethat
standardmethodologiesdonotholdforsitesoutsideofnormaloperatingconditionsand
thusprojectsintheareasareoftencarriedoutwithinadequateknowledgeonicing
andotherextremeweatherconditions.
8
Estimatedlossdueto
safetyriskoficing,Xdays
of0production
Estimatedlossdueto
operationwithicedblades,
XdayswithX%production
loss
Estimatedlossdueto
icedupturbine,Xdays
d
technicalavailability
Estimatedlossdueto
standardoperationallimit,
Xdaysof0production.
bility
Productionlossvscostof
bladeanti-icingsystem
Productionlossandpossible
increainO&Mcostsvscost
ofbladeanti-icingorde-icing
system
Productionlossandpossible
increainO&Mcostsvscost
oflowtemperaturemodifications
Estimatedenergyyield
assumingicefreeconditions
Estimatedinvestmentcosts
assumingstandardtechnology
SITEWITHSAFETYRESTRICTIONS
SITEWITHSLIGHTICING
SITEWITHHEAVYICING
LOWTEMPSITE
mentofsitesincoldclimates:therearesitesinverylowtemperatures
smostfrequentjustbelow0°tes
havetoconsiderallthecasabove.
9
2WINDTURBINESINCOLDCLIMATES
Therearealreadyveralsiteswitheitherexistingorprojectedwindparksincold
climates:NorthernandCentralEurope,NorthernAmericaandAsia(ChinaandRussia).
Alltogetherapproximately500MW(Fig.2).
Thefollowingdescribesoperationalexperiencereportedbythepermanentmembersof
theIEAAnnexonwindturbineoperationincoldclimates.
Sitewithcoldclimate
turbine(s)
Projectedcoldclimate
turbine(s)
onsofoperatingwindturbinesincoldclimatesites[2,3,4,5,6,7].
2.1NORTHERNEUROPE
InScandinaviathereareexistingsitesinFinlandandthemountainsofSwedenand
dinaviaicingisoccasionalonthecoastline,andvereicingconditions
aturesmayfallbelow–20°Cofteninhigher
hecombinationof
verygoodwindconditions,vereicingandlowtemperaturesonarcticfelltops,arctic
modificationsforturbineshavebeendeveloped[12].Thoughdesignedforarctic
conditionsbladeheatingsystemshavebeeninstalledalsotomildericingconditions[9].
IntheLaplandregionofFinlandicingisvere,withrimeicingconditionsupto200
hour
ismostharshbetweenNovemberandFebruaryandoccursmostofteninatemperature
rangeof0°C--7°C.[8]ThereistwofindfarmsinFinnishLaplandOlostunturi-fjelland
Lammasoaivi,nturi-fjellwindfarmconsistsoffive
BonusMkIV600kWwindturbinesandLammasoaivicontainsoneBonusMkIV600
10
binesareequippedwithanice
ctureroftheJE-Bladeheatingsystems
romLapland,windturbinesinFinland
locateincoastalareasandinthesouthernarchipelagowheretheyalsoexperience
imateversionsofthestandardturbinesareud
inth
exceptionisthewindfarmatPori,locatedalongthewesterncoastofFinland(N61.3°,
E21.2°)wherethefourturbinesthatarelocatednexttoabusyroadwereequippedwith
irePoriwindfarmconsistsof9
d
turbinesupplierwasBonusEnergyA/SandtheturbinesutheJE-Systemblade
ccursoccasionallyatPori,mostoftenattemperaturesjust
belowfreezing(0°C--3°C).[9]
AccordingtotheFinnishwindturbinestatisticsnearlyeverysiteinFinlandreports
downtimeduetoicingorlowtemperaturesduringthewinter.[21]
Norwayhasalongshorelinefacingthewarmwatersoftheeasternpartofthenorth
ssuresystemsforminginthepolarjetstreamareasover
thewarmAtlanticwatersmoveeastwardandensurehighwindspeedsandamild
podIslandsandridgesalongthecoastare
edtootherareasintheworldatthesamelatitude,
hCape(71º),-4ºCisthe
lowestmonthlyaveragetemperatureatalevel.
Inclo
experiencewithwindmonitoringprograms,itemsasthefrequencyoficingismore
dturbineslocatedatHavøygavlen(Latitude
71ºand275mabovealevel)donothaveheatedblades.
uentlythenorthern
partofSwedengenerallytakesshelterfromvereicingconditionsbehindthe
fwindturbinesstillexperienced,particularlyinthearea
ofJäonallySweden
experiencecoldeasterlywindsflowingoffoftheunfrozenBalticSeacreatingvere
eventinDecemberof2002caudturbineswithout
bladeheatingsystemstobeputoutofoperationforveralweeks.
Thecombinationoflowtemperatures,below-50inthenorthernSweden,andlowsolar
radiationduringthewintermonthslimittheabilitytode-icestructuresthatareiced
uresthathavebeenicedupmaystayicedforlong
periods.
Occurrencesofsuper-cooledrainarecommoninSwedenandaverecawas
recordedattemperaturesbelow-10asfarsouthasStockholmonFeb6,nt
incloudicingwillalsoimpactalloperatorsoflargeoffshorewindturbinesintheBaltic.
Inaddition,theannualreturnoftheaicealongthecoastline,lakesandnorthernas
willcreateasignificantchallengeforthedesignerofoffshorewindturbinefoundations.
11
Aspartofavoluntarynationalprogramtheincidentsofproblemsrelatedtooperating
windturbinesincoldclimatehavebeenreportedandenteredintoadataba.92impact
reportswerereceivedfor2000,2001,and2002reportingapproximately8000hoursof
misdproduction.
2.2CENTRALEUROPE
.,ref.19,ananalysshowedthaticingconditions
existsinmuchlargerregionsofEuropethanearlierhasbeenexpectedbythewind
lysisalsofoundthatincentralEuropeicingandlow
temperaturesdeterioratewindenergyproductionatelevatedsites,whichunfortunately
herelowoperatingtemperaturesandicing
hasbeenrecordedcentreontheAlps,Apenninesandothermountainousareas.[19]
HeavyicingandahighnumberoficingdaysisobrvedatsitesliketheApenninesin
ampletheAcquaSruzzatestsiteinItaly,atsamelatitudesasNapoli,
untoficingexperiencedatthatsite
wouldleadtoasignificantproductionloswithstandardwindturbines.[19]
Icingandlowtemperaturesarealsoexperiencedfrequentlyinmountainousregionsof
SouthernFrance,intheAlps,andintheAlbsinsouthernGermany.
Icinghasalsobeenrecordedtodeterioratewindenergyproductionofveralwind
farmsatthehighaltitudesinScotlandmountains.
InSwitzerlandveralprojectshavebeencarriedoutinicingandinlowtemperature
rbinesthatexperienceicingandlowtemperaturesarelocatedathigh
altitudes,llysitesbelow
2000metreabovealevelexperienceonlylighticingandsiteswithhigheraltitudeare
antexperienceontheuofwind
energyunderclimaticallyextremeconditionswillbegainedfromthe800kWplanton
theGuetschnearAndermatt(2300mabovea-level)whichwascommissionedin
thefirstwindturbineinSwitzerlandthatusadaptedtechnology
(2200mabovea-level)aswellasCrêtMeuron(1300mabovea-level),will
increatheknowledgeaboutwindenergyproductioninalpineregionandharsh
climaticconditions.
InEuropethereisagrowingandidentifiedinteresttoerectmorewindturbinesatsites
inwhichthewindturbineswillbepronetoicing.[19]
2.3NORTHERNAMERICA
Windfarmsarebeinginstalledinthreegeneralclimaticregimeffectedbycold
orthcentralregion,suchasthe200MWwindplantsintheLake
Benton,Minnesotaarea,snowfallandcoldtemperaturesarecommonbutturbineicing
12
onallyalongtheeasterncoastoftheUS
andCanada,andspecificallythenortheastsuchasthe6MWplantinSearsburg,
Vermont,turbinesarelocatedonlowaltitudemountainridgesorincoastalregimes
ingonthelocationandaltitude,cloudorrimeicingis
tclarificationofsitesarealongthearcticcoast,suchasthe0.8MW
ites
experienceicing,coldtemperaturesandhighdensityairflows.
InCanada,onecansaywithconfidencethatallturbinesinstalled,exceptmaybethe
onesimmediatelylocatedontheEastandWestcoaststhatbenefitfromtheoceaneffect,
willbeexpodtotemperaturesbelow–20°Catonetimeoranotherduringtheyear.
Atmosphericin-cloudicingincounteredontheelevationsofBritishColumbia,
Yukonand,toalesrextent,ng
precipitationontheotherhandismorelikelytooccurinCentralandEasternCanada.
2.4ASIA
InChinaturbinesaregenerallylocatedonsiteswherewinterhumidityistypicallylow,
buttemperaturemaydropbelow–20°C,anddiurnaltemperaturechangesmaybeas
highas40°C.
13
3KNOWLEDGEONCLIMATICCONDITIONS
Generallyinformationabouttheaverageandminimumtemperaturesatasiteisusually
availablehowevericingfrequencyismoredifficulttoobtain,andprojectsareoften
carriedoutwithinadequateknowledgeonicingconditions.
Toassstheconquencesoficingandtherequiredmodificationstostandardwind
turbines,informationonthefrequencyoficingeventsandthedurationoficeon
differentpartsofthewindturbines,suchastheblades,anemometers,nacelle,andtower
analsoeffectwindresourceestimationduetotheoccasionalicingof
anemometersduringameasuringcampaign,whichcanbedifficulttodetect.
AccordingtostatisticsonFinnishcoast,icingcanbe5timesasfrequentat100meters
measurementsoficingareveryrareand
,developmentofmodelstobeudin
especially
trueformountainousareaswherethelocalterraineffectscanbedifficulttoasssin
ementsoftheconditionsfurtherthan1kmawaymayalsonotgive
enoughinformationaboutaspecificsiteinquestion.
Icingoccursattemperaturesbelow0°e,
amountanddensityoficedependonbothmeteorologicalconditionsandonthe
dimensionsandtypeofstructure(moving/static).Therearealsodifferenticingclimates,
suchascloudicing,whensmallwaterdropletsinthecloudimpactandfreezeonthe
surfaceofstructures,demonstrated
inFig.3,whichshowxamplesoftwodifferentsitesinFinland:Poriisacoastalsitein
SouthernFinlandandOlostunturiisasitewithheavyicinginthearcticfellsof
NorthernFinland[8,9].
14
0%
10%
20%
30%
40%
50%
60%
-24-22-20-18-16-14-12-10-8-6-4-20
Temperatureat38mlevel[Cdeg]
F
r
e
q
u
e
n
c
y
[
%]
Olostunturi:Icingeventsathubheightlevel(total1871h)
Pori:Icingeventsat84mlevel(total223h)
ferentsitesinFinlandwithannual
meantemperaturesof0.3°C(Olos)and7.1°C(Pori).
3.1MEASUREMENTS
Propermeasurementofclimaticandicingconditionsinextremeclimatesisnotas
anynsorcanbeconnectedtoadata
acquisitionsystemonehastofindasuitabletofcables,
extremecassimplyusingweatherandUV-resistantequipmentisnotsufficient,
tly,modernnsors,
suchasultra-sonicanemometersanddataacquisitionnetworkscanbeconnectedvia
r,fibrecablesforcoldclimateoperationneedtobeadopted
forsuchuby,forexample,usingnon-freezinggelthatispumpedintoconduits
surroundingtheinteriorcablestopreventwateringressandsubquenticeformation.
Onesuchexampleisdescribedinref[17].Thegelwillalsoprotectacableagainst
breakingifexpodtounforeenexternalloadsbyamaintenancecrews,orreindeers;
ttachmentswill
occasionallybreakandstandardweatherresistantcabletiesarenotsufficientincold
llyweatherresistantNylon12cabletiesshouldbeudincoldclimate
and/orhighmoistureconditions..Asimilarreasoningcanbeappliedtoconnectors.
Instrumentsforcoldclimatemeasurements,includinghumidity,temperature,wind
speed,winddirection,precipitationandradiation,havetobeproperlyheatedunder
icingconditionstomaintaintheiraccuracy(Fig.3).Instruments,moreorlesssuitable
forcoldclimatemeasurements,arecontinuouslybeingdevelopedandevaluatedby
manufacturersandurs[11].Dependingontherequiredaccuracyandinstandard
conditions,theexactlocationofaninstrumentmightberequiredtoadheretoIEA
15
recommendedpracticesorstandards,whichensurepropermountingincludingsufficient
ommendedpracticesarenotavailableforicing
conditions,oneistypicallyrecommendedtostayawayfromsuchevents,likeice
storms,whichisonereasonforthecreationofthisIEAAnnex.
eanemometerinvereicingconditions.(Photo,VTT)
3.1.1Windconditions
Inthefieldofwindenergyaproperlyacquiredwindspeedisofoutmostimportance.
Therearethreebasiccategoriesofneededaccuracywhenmeasuringwindspeedinflat
urceestimationaccuracyrequirementsarearound±5%,theaccuracy
levelofEuropeanWindAtlas[42].StandardIEC61400-1givesanaccuracy
requirementforanemometerudinpowerperformancetestingof±2%[34].Forwind
turbinecontrolaloweranemometeraccuracyisneeded,commonly±3%howeveran
evenloweraccuracylevelmaybeacceptable.[51-53].Manydifferenttypesof
anemometersareavailablewithwidedegreesofaccuracy,downtobelow2%for
icrequirementsaredefinedfordifferentconditionsby
veralnationalandinternationalstandard.
Inaddition,accuratewindspeedmeasurementsincomplexterrainhaveotherdifficult
anddonotneedtheuncertaintyintroducedbyimproperlyheatedormountedwind
velocitynsors.
Upuntilthispointnotmuchattentionhasbeenpaidtoicingofthewindgaugesinthe
winde
issurprisinggiventheimportanceofwindspeedmeasurementinsitingandsystem
averepeatedlyshownthatasmallamountoficereducesmeasuredwind
spee
example,asmallamountofrimeiceonthecupsandshaftofananemometermaylead
tounderestimationinwindspeedofabout30%atwindspeedof10m/elof
underestimationdependsonverityoficingconditions.[Refs.23-26].Thisdecreais
moreinsidiousas,withoutothermonitoringequipment,thereisnowaytodetermineifa
16
yleadtoan
underestimationofthewindspeedorthefailureofaturbinetoshutdowninahigh
windevent.
Althoughmanydifferenticemitigationmethodshavebeeninvestigated,themost
commonsolutionforaccuratemeasurementinicingclimateistheuofaheated
mentssuitableforcoldandicingclimateare
availableandnewdevicesareactivelybeingdevelopedandevaluatedbymanufacturers
andurs[11].
Accesstoanelectricitygridisgenerallyrequiredinordertoheatthensors,which
needtobeproperlyheatedtomaintaintheiraccuracy;solarpanelswillnotsufficeas
oelectricitygridisavailable,
halternativeistheuof
ssFederalInstituteforSnowandAvalanche
RearchhasbeenemployingpropellertypeanemometersintheJuramountainswith
reicingconditionsandtemperaturesbelow0°Cwithhigh
humiditytheirpropellertypeanemometershaveprovidedreasonabledatamorethan
98%ofthetime.
theregionswindmeasurementsareoftenperformedatlowerlevels,30minsteadof
ult,itmaybedifficulttoextrapolatemeasurementresultsto
tricitygridaccessisavailableSODARs
encewithSODARunitsin
Switzerlandhavedemonstratedthatthetechnologymaybeudinharshclimates,but
carefuloversightoftheequipmentisnecessaryanditshoulditislikelynotapplicable
forlongtermmeasurementprograms.
Ifcuporpropellertypeanemometersareud,theanemometer'scupshaftandpost
shouldbeheatedinordertopreventicefromaccumulatingandimpactingmeasurement
quality.
Attentionmustbepaidalsotothepositioningoftheanemometerandwindvaneinicing
reicingconditionstheaccuracygainedthroughheatingisquickly
lostifneighbouringobjectssuchasboomsandmastsareallowedtocollectice.
edforwindturbine
control,considerationsmayalsobeneededtothechangeinwakeandturbulenceontop
ofnacelleunderdifferenticingconditionvenifaheatedanemometerisud.
References19and31providereviewsofanemometerssuitablefortheuinicing
ofthe“WindEnergyProductioninColdClimate”(WECO)project,
fundedinpartbytheEuropeanUnion,veralrearchinstitutionsarecurrently
conductingoperationaltestsonanumberofanemometersandwindmeasurement
OREASIV
conference[22]theannualmarketforice-freensorsonlyinEuropeistimatedtobe
some11millionEuro.
17
3.1.2Icingconditions
ionalice-detectorsudtobeextremely
unreliablehoweverthistechnologyhasimprovedconsiderably,ashasknowledgeabout
tiontoimprovedtechnologyrearch,
commercialorganisationsarealsoconductingandsharingextensiverearchonice
accretionduetotemperature,humidity,radiation,winddirection,windspeedand
precipitation.
Currentlythereareveraltypesoficedetectorsonthemarketandaremainly
manufacturedforaviationandmeteorologicalpurpos.[19]Principlesofoperationof
icedetectors,somespecificicingnsorsandotheradhockapproachesthathavebeen
udinrearchprojectsareprentedinthistext.
FinnishcompanyLabkoOyhastwoversionsoficedetectorstooffer,LID(LabkoIce
Detector)kingprincipleofthebothmodelsisthata
longitudinalwirewavesistransmittedintoannonmagneticwirewithpiezoelectric
ceattenuatesthesignalmorethanwaterorothernonsolid
tenuationcanbemonitoredandudinicingindication[27].
TheInstrumarLimitedicensorIM101functionthroughmeasurementofthesurface
tais
lticingwindowis
programmedintoeachdeviceandwhentheparametersfallwithinthiswindow,an
“icing”101hasaninternalsolidstateswitchthatisclod
osuremaybe
udtoturnon/offlowpowerdevicesdirectly,eud
forcontrollingdevicessuchasalarms,eventrecorders,orheaters.[28]
sorworkson
tionprobevibratesultrasonicallyataresonant
softheicecollectingontheprobecaustheresonant
encydecreaequivalentto0.508mm(0.020inch)ofice
ametime,thedetector
ricingevent
detectedwithinthat60condsretsthetimertozeroandtheicesignalremains
activatedforanadditional60conds[39].
Oneinterestingpossibilityistheuofdewpointdetector,whichisdesignedtooperate
inbelowzerotemperatures,todecidealimitforthe
relativehumiditye.g.97%andassumethatwhentemperatureislowerthanzeroicing
suchadewpointmeasurementasanicedetectorwasstudiedatthePori
siteinFinland[9]andisdiscusdingreaterdetailinthepaperbyMakkonenetal.
[29].Oneofthemainissuesidentifiedinthereportismoregeneral,thereisnoabsolute
referenceforcalibratingicedetectorsbecaueventhemostup-to-dateicedetectorsare
not100%accurate.
18
Forwindturbineapplicationsitispossibletoidentifyicingusingoneheatedandone
standardanemometerslookingatthedifferenceinwindspeed,howeverafewquestions
hslowershouldtheunheatedanemometerreadcomparedtotheheated
onetobeinterpretedasanicingsignal?Isitpossibletoavoidfalalarmscaudby
wakesontopofwindturbinenacellebycarefulplacingoftheanemometer?Whena
standardunheatedanemometerfreezesitmaytakealongtimebeforetheanemometeris
ice-freeagain,ref.[30],whichcanmakedeterminingtheactualicingtimedifficult.
Thismethodhoweverenablestheestimationofenergylossthatawindturbinewould
experienceatthatspecificsiteinicingconditions,especiallyifunheatedanemometers
aretobeudforturbinecontrol.
InanexperimentonmeasuringicinginNorthernCanadatwoheatedandoneunheated
anemometerswereudtomeasuretheactualwindspeed,icingtimeandsublimation
.[33]Oneoftheheatedanemometerswaskeptice-freeandtheother
washeatedaftereveryoccasionwhenthewindspeedofthatanemometershoweda
15%eatedanemometer
sshowedthatitispossibletoestimatetheicingtime
lsodemonstratedthat
onecouldestimateofactualicingtimewiththismethod.
Productionpowerofthewindturbinecomparedtothepresumedproductionpower
accordingtothenacelleanemometermayalsoprovideaguideoficingsinceaturbine
ritisstill
unclearwhatconclusionscanbemadeduetoongoingissuessuchashowsmallshould
thepowerdegradationsbeandhowquicklyafterthebeginningoftheicingcansucha
andiftheturbineislocatedinaremotesiteandnovisual
obrvationsarepossible,reducedpowerproductionisofteninterpretedasan
“anemometererror”whenthecauofsucherrorisicing.
Automaticvisibilitynsorsmayalsobeudasanicedetectorhowevertheentire
instrumentespeciallythelens,mustbeheatedinlowtemperaturesandicingclimate
toensureappropriateoperationofthedevice.
3.1.3Measurementofothermeteorologicalparameters
Itisknownthattemperaturemeasurementsareimpactedbytheirsurroundings,
formanceofthermometersinicing
softhostudieshaveshownthat
errorsofveraldegreesarepossiblewhenthermometersnotdesignedforicing
ayeronathermometeroronaradiation
shieldinsulatestheprobefromthesurroundingairandcausdelaysanddampening
tcatheclodmeasurement
conditionsoftheairinsidetheradiationshieldmaycontinueuntiltheicehasmelted.
[31]
19
Inicingclimatestheradiationshieldsforthermocouplesshouldbeheatedorthe
meteritlfshouldbedesigned
foricingandlowtemperatureoperation.[31]
Measuringhumidityreliablyinicingandlowtemperaturesclimateisalsoanontrivial
tynsorsanddewpointdetectorsshouldbeplacedwiththesame
ribedabovetheimproperuofthe
radiationshieldcouldimpactthetemperaturemeasurement,inwhichthecalculationof
rdhygrometersdesignedfortemperaturesover0°Cwillgive
unreliableresultsatlowtemperatures.[31]
Instrumentsforcoldclimatemeasurements,includinghumidity,temperature,wind
speed,winddirection,precipitationandradiation,havetobeproperlydesignedand
heatedundericingconditionstomaintaintheiraccuracy(Fig.4).Instrumentsthatare
suitableforcoldclimatemeasurementsarecontinuouslybeingdevelopedandevaluated
bymanufacturersandurs[11].
3.2MODELLING
Modelsforpredictinglocalweathereventsincludingwindandicingestimatesarebeing
orfactorlimitingtheprogressof
modellingisthecalculationcapacityofcomputers,whichistoolowtoenableaccurate
cialcomputerprogramsandmodels
forcalculatingshapesand
massoficebuildupandbladeheatingdemandincertainicingconditionshavealso
windturbineicingrearchtookholdthe
aerospaceindustryhaddevelopedcomputerprogramsthatmodelleadingedgeicingof
ate1970’spowercompaniesalsodevelopedmodelstocalculate
els,TURBICEand
LEWICE,thatareudincalculatingicemassandbladeheatingdemandsindifferent
tion,thebasisofmethodsthatare
udtocalculatedifferenttypesoficingfromstandardmeteorologicalobrvationsis
prented.
Ofthevariousmodelsthathavebeendeveloped,twobasiccategories,physicaland
empirical,havebeendistinguishedbadonthedifferentstandpoints,backgroundsand
thedifferentphysicalpropertiesofdifferenticingphenomenon.
3.2.1PhysicalModels
Physicalicingandmeteorologicalmodelsarequitedetailedandrequirespecific
definitionofmeteorologicalparametersincludingthewatercontentoftheair,droplet
size,windspeeds,dellingtheiceaccretiononwindturbine
bladeorpowerline,onehastoalsoknowaccuratelytheshapeandsizeoftheobject
edmodelsarecomputationallydemandingandhave
thereforebeenimprovedtogetherwiththetechnologicalimprovementsofcomputers.
20
Asaparatecategory,fullphysicalmeteorologicalmodelscanalsobeudtopredict
tancemeso-scalemodels(MM5,MC2andothers)havethephysical
odels,generallyudinregional
weatherprediction,canbeudtopredictupcomingicingeventsortoprovideageneral
predictionofthelikelihoodofsucheventsforspecificprojectsunderconsideration.
3.2.2Empirical/StatisticalModels
atecaudbyin-
cloudicingatacertainsitemaybequantifiedfirstbydatafromthenearest
oudheight,cloudcoverandtemperaturedatatogether
withsiteelevationitispossibletoestimatethefrequencyoficingthatsiteislikelyto
experience.
Knowledgeoficingeventshasincreadandmoremeteorologicalandtopographical
terssuchastemperature
(air,object,wet-bulbanddewpoint),winddirection,windspeed,cloudheight,cloud
cover,thehumidityprofile,precipitation,regionaltopography,localtopography,object
size,shapeandmaterialcompositeandsolarradiationhavebeenaddedtomore
comehasbeenthatthemodelscannowalsoprovide
informationabouttheamountandrateoficinginsteadofjustthefrequencyoficing
events.
3.2.3IcingTypesandDescriptionofCalculationMethods
In-cloudicingisconsideredtooccuriftheheightofcloudbaislessthanthesite
elevationandthetemperatureatthesiteisbelowzero.
Empiricalandstatisticalmodelshavebeenmodifiedbecauaccuratecloudba
ingresultscanbeimproved,byusing
statisticalrelationbetweenweathersituationsandcloudposition(cloudbaheightand
horizontallocation/extent).Byusingstatisticalvaluesofdropletsize,windspeed,
direction,andobjectsizeandshape,sof
aaccumulatediceaccretionmayalsobeestimatedwiththismethod.
Calculationsusingfullphysicalmodelswithmeteorologicalandtopographical
parameters,particlesize,concentration,momentum,heatbalanceandobjectshape
changemayprovidemoreaccurateresultsdependingontheaccuracyoftheinitial
alephysicalmodelsrequirelargecalculationcapacities.
Freezingprecipitationoccurswhenitisrainingandwet-bulbtemperatureliesbelow
zero.
Empiricalandstatisticalmodelscalculateicingfrequencyandamountfrom
precipitationintensity,duration,windspeed,meanairtemperature,objectsize,shape
andanempiricalcorrectionfactor.
21
Aswithin-couldicingcalculationsusingfullphysicalmodelsitispossibletomodel
thodalsohas
thesamedrawbacks,theyarecomputationallyintensive.
Frostoccurswhenthesurfacetemperatureofanobjectdropsbelowthefrostordew
untandtypeoffrostaregiven
asanequationoftemperatureratios,empiriccorrectionfactorandhumidity.
Wetsnowandsleetisformedfromdrysnowwhenatlowerelevationsthereisastrong
enoughpositiveheatfluxfromtheenvironmenttomeltthesurfaceofdrysnowflakes.
[43]
3.2.4Icingrate
Therateoficingisdependentonthefluxofparticles(concentrationtimesvelocity)in
hedifferent
sizeandthereforedifferentinertiaofparticles,someofthemwillcollidewithanobject
whileothersmallerones,whichhavelessinertia,followtheairstreamandpassthe
rticlesalsobouncewhencollidingwithanobjectandthuswillnot
pendingontheheatfluxformthesurfacetothe
surroundings,collidingparticlesfreezeattheirimpactspot,rimeice,orformathin
waterfilmonthesurfaceofanobject,enticingprocessalsoleadsto
ral,duetoitscomplexityandthemany
processparametersaphysicalicingmodelthatwouldapplytoallicingprocessstill
aldescriptions,includingheattransfer,ofdifferenticing
processareprentedindetailinref.[44-49].
3.2.5TURBICEandLEWICE
Smallamountsoficeonwindturbinebladesdeterioratetheiraerodynamicperformance
rmore,largeice
cesarealso
hazardouswhentheyshedofftheturbinebladeswithhighvelocity.
Asintroducedpreviously,twosoftwaremodelshavebeendevelopedthatcanbeudto
analyiceformation,TURBICEandLEWICE.
TURBICE
Thisnumericalmodelsimulatesiceaccretion,amountandiceshapesonwindturbine
eenunderdevelopmentattheTechnicalRearchCentreofFinland
(VTT)since1991.
Themodelaccretesiceonatwo-dimensionalairfoilctioninapotentialflowfield
ericalsolutionforthepotentialflow
followsthecommonlyud“panel”ttrajectoriesareintegratedfromthe
steady-stateequationofmotion,usingdropletdragcoefficientsofLangmuirand
22
Blodgett(1946)andBeardandPruppacher(1969).Theintegrationbeginstenchord
lengthsupstreamoftheairfoilction,andiscarriedoutusingafifth-orderRunge-
actpointisdeterminedby
linearinterpolationbetweenthe600coordinatepoints,whichdefinetheairfoilction.
lesofattackexperiencedbya
elcanalsosimulateicingwhenthe
bladeisheated.
TURBICEsimulationshavebeencomparedandverifiedwithdatafromicingwind
tunnelexperimentsforaircraftwindctionsandfromafieldstudyofnaturalwind
tionshaveshowngoodagreementwithactualdata.[54]
InthedevelopmentofthebladeheatingtechnologyTURBICEsimulationshavebeen
utilidinthedeterminationoftheimpingementareaofwaterdropletsonbladesurface
andindeterminationofbladeheatingpowerneededindifferenticingconditions.
Resultshaveenabledtheoptimisationofthenecessaryheatingpowerandhasbeen
utilidinthepositioningofablade-heatingelement.
LEWICE
AnothersoftwarethatcanbeudforiceaccretionandheatingdemandisLewice2.0.
Lewice[40]wasdevelopedbytheicingbranchattheNASAGlennRearchCenterin
Cleveland,iceaccretionpredictioncodethatappliesatimestepping
doesnotpredictthe
degradationinaerodynamicperformancesduetoicingratheritevaluatesthe
thermodynamicsofthefreezingprocessthatoccurswhensupercooleddropletsimpinge
maryuisforevaluatingicingonaircraftbuthasbeenadaptedto
workonotherapplications.
Theparticletrajectoriesandimpingementpointsonthebodyarecalculatedfroma
potentialflowsolutionthatisproducedbytheDouglasHess-Smith2-Dpanelcode
atelyandifspecified,theflowsolutioncanbeobtainedfrom
agridgeneratorandgrid-badflowsolverorreadinasasolutionfilefromthisflow
hstandingthemethodud,theflowsolutiondeterminesthedistribution
ofliquidwaterimpingingonthebody,whichthenrvesasinputtotheicing
growthrateonthesurfacebodyiscalculatedfromthe
icingmodelthatwasfirstdevelopedbyMessinger[40,41].Thisisaniterativeprocess
ocedure
isrepeatedforaspecifictimeduration.
Lewicecanmodelbothdryandwet(glaze)tiontosimulatingtheice
accretion,sinconjunction
withtheiceaccretionroutineandcalculatesthepowerdensityrequiredtopreventthe
i-icingmodesarepossible:runningwetand
tsourcefortheanti-
icingcapabilitycanbespecifiedasbeingelectrothermalorhotair.
23
Inthecurrentapplication,
alsogeneratedataaboutdroplettrajectories,collectionefficiencies,impingementlimits,
energyandmassbalances,otentialflow
cannotmodelstallorpost-stallbehaviour,thecalculationsarevalidforunstalledrotor
regionsonly.
3.3MAPS
AnicingmapofEuropehasbeendevelopedinordertoestimatetheareasinwhich
ersionsoftheEuropeanIcingMap
andFrostmapwereproducedinWECOEUproject[19,20,50],prentedinFigure5.
Noicing
Occasionalicing-lessthan1dayperyear
Lighticing-2-7daysperyear
Moderateicing-8-14daysperyear
Strongicing-15-30daysperyear
Heavyicing-morethan30daysperyear
Weatherstation
apofEurope.[19]
24
AnupdatedversionsoftheEuropeanIcingMaparecurrentlyunderdevelopmentinthe
r,atoolforestimatingthe
numberoficingdaysandicingintensityatagivensiteisstillmissing.
Duetothelocaltopography,variationsinicingverityandintensitymayvarygreatly
withinshortdistancesandthereforeicingmaps,suchasinFigure5,cannotbe
interpretedaxactandmustbeudinconnectionwithlocaltopographical
informationand,ifpossible,withmeasurementstatistics.
AmoreexacticingmapfortheBritishIsleswheretheeffectofterrainhasbeentaken
intoaccountisprentedinFigure6..Theicingmapwasproducedbyfirstexamining
thenumberoficingdaysat0m,250mand500melevationsabovealevelatnine
hreelevelswere
nddetailedestimationofthenumber
oficingdayswastheninterpolatedandextrapolatedbyusingthepreviousthreelevels
ultisaclearpictureofareaswereicingcouldbe
faced.[50]Duetothelocalclimaticconditionsandlownumberofweatherstations
udintheproductionofthemap,theactualnumberoficingdayxperiencedatsome
sitemaydifferfromtheamountprentedinthemap.
numberofin-cloudicingdaysintheUKandIrelandatgroundlevel
andtheweatherstationsudincalculation[50].
allsuchmapstheverity
andintensityoficingmayvarygreatlywithshortdistanceandthemapinFigure7
shouldbeinterpretedasindicativeonly.
25
MapfortheaveragenumberdayswithfreezingprecipitationduringayearinCanadais
prentedinFigure8.
Similargeneralmapsofthisnaturearegenerallyavailablefromtheweatherrvice
agenciesofmostcountriesinnorthernandsoutherncountries.
apofSwitzerlandfor1000m.a.s.l
26
mberofdayswithfreezingrainduringoneyearinCanadabetween
mNationalArchives&DataManagementBranchofthe
MeteorologicalServiceofCanada.
27
4TECHNICALSOLUTIONSINUSE
Thereareawidearrayofsolutionsthathavebeenudtoreducetheimpactofcold
lowingctionof
thisdocumentreviewscurrentexperience.
4.1TECHNICALSOLUTIONSFORICING
4.1.1Sensors/Instruments
Avarietyofheatedwindnsors,asdiscusdingreaterdepthearlierinthispaper,are
available,testedandudatsiteswhereicingisfrequent[11].
Currentlysomemanufacturersalsouanemometerstoindicateweatherturbinesare
heanticipatedproductionpower,calculatedfromthewind
speed,ifferenceislargeenoughanalarm
cas
turbineareshutdown.
4.1.2Blades
Bladeheatingmaybenecessaryorprofitableatsitesthatexperiencefrequenticingor
ak-evencostofsucha
heatingsystemdependsonlostenergyproductionduetoicingandthepriceof
orewhenthefinancialbenefitsofabladeheatingsystemare
evaluated,icingtime,
heatingsystemmayalsoberequiredasasafetyprecautioninconnectiontotheplanning
helimitationsofbladeheatingsystemsistheir
energyconsumption,eapproachtoestimatethebreak-
.[12].
Anumberofdifferentapproachesforthebladeheatinghavebeenprented,developed
andtestedbutcurrentpracticeindicatesthatinheavyicingconditionstheoutersurfaces
ofthebladesneedtobeheatedinordertoachievesatisfactoryresults.
Atpre
Finnishbladeheatingsystem,wherecarbonfibreelementsaremountedtotheblades
nearthesurface,hasthewidestoperatingexperience,from18turbinesatvarioussites,
withatotalofnearly100operatingwinters[12].
Onelowpowerconsumptionmethodforheavyicingenvironmentsistheuof
pneumaticdeicingsystemthatworkswiththerapidexpansionofinflatablemembranes
arsystemhasbeeninuonsomesmallandregionalaircrafts
encefromwindturbineshoweverislacking.
28
Insiteswhereicingisslight,infrequentandtheicingperiodsarefollowedby
temperaturerisingabove0°Corareasofhighwintersolarintensity,bladescoatedwith
ngtheturbineandcirculatingheatedairinsidethe
dthatusblowerandheater
tocirculatehotairinsidetheturbinebladeisunderthedevelopmentinSwitzerland.
weveris
ngthewindturbinewhenicing
r,thismethod
doesrequireicedetectors.
Therehavebeenanumberofotherpropodsolutions,likeblade-heatingsystemsbad
onmicrowavetechnologybuttodatetheyhavenotbeensuccessfullyimplemented.
TurbineSafety
Turbines,withorwithoutbladeheatingsystems,poariskintheformofthrownice.
Irrespectiveofwhethertheturbinesareequippedwithbladeheatingsystems,warning
houldbelocatedatleast150mfromturbineinall
nce19providesamethodtoestimatetheriskthatresultsfromice
pleofawarningsignisshownin
Figure9.
from.
29
4.1.3Othercomponents
Turbinesthataremodifiedforvereicingclimatemustalsocopewithsnowandthe
freezingofmoistureinthegearbox,tproperly
alingthenacelle,itmayfillwithdriftingsnowashasbeenexperiencedinLapland
xesandyawsystemsneedtobeheatedandkeptfreeofice,asdo
anydiskbreaksorparators.
4.2TECHNICALSOLUTIONSFORCOLDCLIMATES
Littlespecificinformationisavailableaboutmaterialpropertiesandlubricantsforcold
ailable
informationcomesintheformofreportscitingfieldexperiencesfromprojectsincold
rehoweversomecommonareasofconcernthatareexpresd
repeatedlyintheareaofturbinematerialsandlubricants.
Mostturbinemanufacturesofferproductsorupgradestoproductsforcold
ormationindicatesthattheuoftheupgradesisrequiredfor
successfulunitoperationintheclimates.
4.2.1Materialsandlubricants
Theuofcoldresistantsteelinallstructuralmemberswithweldsdoesnotincreathe
rdhot-dipgalvanizedboltshaveprovenadequateinlow
temperatures[15].
RecenttestingattheNationalWindTechnologyCentre,USA,haslookedatthecyclic
loadingofwindturbinebladerootstudsatambientandextremecoldtemperatures,-45°
to-51°C(-50°to-60°F).Testingconsidered4140steelrootstuds,aVinylEster/E-
glasslam
thelimitedtests“allofthecoldtemperaturesamplestestedexceededthelifeofthe
roomtemperaturecontrolgroup,thoughnoneofthecoldtemperaturesamplexhibited
anyevidenceofsuperiorconstructionovertheroomtemperaturesamples”[16].The
tests,oneofthefewbeingconductedspecificallytolookatissuesrelatedtowind
turbineconstruction,showthatoperationincoldtemperaturesdonotalwaysresultin
damage,butmayactuallyimprovetheperformanceofthesystem.
30
fatiguepulltestsonbladestudsconductedatNRELcomparingstuds
atstandard(20°C)andarctic(-48°C)temperatures.
Lubrication:Intheareaoflubricationandhydraulicoils,similarpracticalworkhas
as
manufacture
mostcasthelubricantshavebeentestedbuttheoperatorincouragedtoobtain
specificcertificationspriortotheiru.
4.2.2Heatingofcomponents
Attheprentmomentsurfaceheatedgearboxesandgearboxeswithimmerdheaters
withconstantoilcirculation,generatorheatersandalsoheatersforthecabinscontaining
controlelectronicsareudtoavoidcoldrelatedproblems.[15,32].Especially
importantistheprotectionofcontrolelectronicsagainstmoistureandcondensationat
siteswherelowtemperaturesduringthewinterisfrequent.
4.3OPERATIONALSOLUTIONSFORCOLDCLIMATES
Windturbinemanufacturersrecommendthat,eventheturbinesthatareequippedwith
coldweatherpackageshouldbestoppedattemperaturesbelow-30°sites
lesolutionmightbe
31
toallowtheturbinetooperateatpartialloadwherethestresswouldstaybelowthe
designlimit.
Anadditionalconcernwiththeoperationofwindturbinesincoldclimatesisthatlow
noverpowerwind
turbinegeneratorsandhasbeenknowntobrakegearboxesorturbinemainshafts.
Measuringtemperatureanddisablingthewindturbinesduringextremelow
temperatureshavebeenudtoreducethechanceofsuchfailures.
4.4O&MCONSTRAINTS
Turbinesmaylocateatremotesitesandtheaccesstothesitesmaybedifficultoreven
ssiblethattheaccesstositemaybelimitedto
ereforeoutmostimportantthatbasic
toolsthatenablelightrepairssuchaswrenches,hammers,tat
rkingconditionsduetohumidity,highwindspeed,snowingoricingmay
perationandmaintenanceshouldalso
includethemaintenanceofcoldclimatemodifications.
32
5OPERATIONALEXPERIENCE
5.1OPERATIONALEXPERIENCEINICINGCONDITIONS
thecaevenwith
slighticingastheaerodynamicpropertiesofthebladearensitivetominorchangesin
durationoficeonthebladescanbeconsiderablylongerthanthetimeoficing
mesofveralweekswithasingleicingincidenthavebeenreported
inSouthernGermany.
Ontheotherhand,glazeiceaccretionhasbeenshowntocauoverproductiondueto
delayedstallonpassivepitchcontrolledwindturbines[57].Inmostcasthiswillbe
ration
overratedpowercausadditionaldamagetothecomponentsandwillresultina
shorterlifeofthegenerators,bearingandgearboxes.
Thestructuralloadsofaturbinemayincreasignificantlyduetoicingoftheblades,
tion,iceusuallyshedsfrom
thebladesunevenlyresultinginfurtherloadingontheturbine[10]duetothemass
imbalance,orcesresultintwobasicload
types;extremeloadsandfatigueloads,dependingontheturbinesstructuraldesignand
rlydesignedcontrolsystemshouldaddressissuesofextreme
loads,irrespectiveoftheiroriginandsinceotherextremeloadcaus,suchasasingle
failingbladepitchmechanism,typicallyresultinhigherloads,theextremeloadcas
eloadingissimilarly
sicalinfluenceofthelatter
isrelativelyeasytoestimatebuttheknowledgeregardingthefrequencyofsuch
occurrencesisscarce,eloadingcaudby
aerodynamicforces,suchasthocaudbymererimeiceaccretion,arelikelytobe
underestimatedbytoday’sinternationalrecommendations.[58]
Icethrownofftheblademayalsopoasafetyriskeveninareaswhereicingis
infrequent,specificallywhentheturbinesaresituatedclotothepublic,suchasroad
andskiingresorts.
Icesheddingoffthetowerorthenacellecanalsopoasimilarthoughamorelimited
higherespeciallyforthervicepersonnel.
Caswhereicingoftheyawgearhasresultedinthedamageofyawingmotorhave
beenrecordedinFinland.
Icingalsoaffectswindnsors,bothinresourceestimationandcontrollingtheturbine.
Awindturbinewithanicedcontrolanemometermaynotstarteveninstrongwinds,
dloadsarecaudifapitchcontrolsystem
33
ndvanemayleadtooperationin
misalignedyaworaproductionstopduetothemisalignment.
5.2OPERATIONALEXPERIENCEINLOWTEMPERATURES
Lowtemperatureffectonmaterialsandinwindturbinesprimarilyonglassfibre
structures,plastics,ubricationoilsandgreashavebeen
re
temperatureandcondensationhavealsodamagedcontrolelectronics.
cationof
standardhydraulicsystemmayalsonotbelimitedtothespecificoil,modificationofthe
tubes,valvesandequipmentassociatedwiththehydraulicsystemmayalsoberequired.
Duetohighviscosityofstandardoilsinlowtemperaturesordifferentpropertiesofcold
temperatureoils,turbinestart-upmaybedelayedtohigherwindspeedswhichwill
impactoverallturbineperformance.
Whengoingtoverylowtemperatures,theneedforcoldweatherorweatherresistant
materialxtendsforboththesteelandplasticsudinthesystemfabricationbutalso
wire
forwhichtheinsulationbecomesbrittlemayfracture,leadingtoshorting,hascaud
ieceof
equipment,eventhemosttrivial,mustbeassdforflexibilityandusabilityat
extremetemperatures.
Alsorv
mayresultinincreadO&Mcostsorextendeddowntimeoftheturbine.
Anotherfactorthathasbeenidentifiedistheincreadsystemloadingduetothehigh
tuncommontohave(stallcontrolled)turbines
produceover20%lcasofgenerator
overheatinghavebeenreportedinCanadaandFinlandcaudbyoverproductiondueto
highairdensity[13].Thisleadstoproductionlossandprobablyhasleadtogenerator
failures[14].Impactsonthegearboxandbreakingsystemswilllikewineedtobe
r,duetothe
complexityofthesystems,specifictestsandtheimpactofcoldtemperaturesonthe
subsystemshavenotgenerallybeencarriedout.
5.3COUNTRYOPERATIONALEXPEREANCE
5.3.1Finland
AtOlostunturi,thesitedescribedindetailedinction2.1),innorthernFinlandstandard
powerperformancemeasurementswerecarriedoutforasingleturbineandthe
performancewasfoundtobeaccordingtothemanufacturerspowercurvewhenicing
theharshesticingperiodstheperformancedidnot
34
extremeicingcasthebladeheating
tiontothatinsomecastherunbackwateron
thebladeduringicingandbladeheatingwasfoundtofreezeafterithadpasdthe
thefallsandspringsthebladeheatingsystemwasable
terof2000to
2001thebladeheatingsystemud43674kWh,whichcorrespondsto3.6%ofthe
turbine’dheatingenergygrewduetotheproblems
withicedetectors,whichledtothebladeheatingequipmentreceivingmorepowerthen
helesswindenergyconversionatsiteslikeOlosturturiwithouta
bladeheatingsystemswouldbeimpossibleandunprofitableduetoturbinedowntime.
Similarpowerperformancemeasurements,asatOlostunturi,werecarriedoutatPori,
-cloudicingwasobrvedtobe
ronglysuggests
thaticingbecomesamoreimportantissuetocoastalwindparksatsiteslikePoriwhen
r,thewintersduringthe
measurementperiodweremilderthanaverageandicingwasonlyobrved
deheatingsystemwasudfor10minuteverynighttoavoidice
asontoinstallabladeheatingsystemtoawindturbineat
siteslikePoriisforsafetyofpublic.
InPori,lightingfrequencyishigherthaninNorthernFinlandandlightingstrikestothe
bladeheatingelementshavebeenregisteredalthoughdamagetotheiceprevention
systemcouldnotbedetected.
PowerconsumptionofthePoriicepreventionsystemwasmeasuredtobe1%ofthe
turbine’imumheatingpoweroftheturbinesis6%ofthe
nominalpoweroftheturbines.
ReporteddowntimesduetoicingandlowtemperaturesinFinlandbetween1996-2001
areprentedinTable1andTable2respectively.
eddowntimesduetoicinginFinland1996-2001.[21]
FINLAND
HoursTurbinesHoursTurbinesHoursTurbinesHoursTurbinesHoursTurbinesHoursTurbines
Lapland1192159851
Åland973443
BayofBothnia8584372598253275737414315
SeaofBothnia21
GulfofFinland
Total18423020
Totalnumberofturbines1
Shareofthetotaldowntimeofthe
turbinesthatreportedicingduringthe
year
45%21%9%12%9%26%
299719981999
¨
35
eddowntimeduetolowtemperatureinFinland1997-2001.[21]
FINLAND
HoursTurbinesHoursTurbinesHoursTurbinesHoursTurbinesHoursTurbines
Lapland45033211006
Åland11
BayofBothnia2818964
SeaofBothnia60217337
GulfofFinland
Total8852044253917
Totalnumberofturbines2129386161
Shareoftheoperationalhoursofthe
turbinesthatreportedlowtemperatures
duringtheyear
0%2%3%1%2%
920002001
IcingretardsmorewindenergyproductionthanlowtemperaturesinFinland(Table1
andTable2).Thereareveralreasonsforthisdifference,suchasthatlowtemperatures
operationwastakenintoaccountinthedesignprocessofmostturbinesoperatingin
tion,themajorityofFinland’swindturbinesarelocatedincoastalareas
oweverisrecorded
regularlythroughouttheentirecountry.
5.3.2Sweden
Aspartofanationalprogram,monthlyoperationalstatisticsfrommostwindturbine
ownershavingobtainedinvestmentsubsidieshavebeencollectedformorethan10
om622windturbines,totalling345MWdisperdnationally,were
availablebytheendof2002[55].Morerecently,theaveragecapacityofinstalledunits
alenergyproduction
alsoincreadfromthe2001amountof609GWAby23%.Figure11showsthe
locationandimpactofreportedcoldclimateincidentreportsduring2000-2002.
36
ationof565outofatleast622windturbinesisshown(red).Cold
climatereportshavebeensubmittedfrom47turbines(blue).Left:Distributionof92
:Distributionof8022
thecircle
reprentsthenumberofreportsandincidenthoursrespectively.
TheSwedishstatisticalincidentdatabacontainsatotalof1337recordsreportedto
haveoccurredinbetween1998-01-31to2002-12-31resultinginatotaldowntimeof
161,523hours.92incidents(7%)arerelatedtocoldclimateresultingin8022(5%)lost
otalforcoldclimates,thereportedlowtemperaturedowntime
totalled669hours(8%)whiletheequivalentforicingeventswas7353h(92%).The
numberofunrecordedicecascansafelybeassumedtobeoverwhelmingdueto
manualreportingincombinationwithaninherentlackoftechnologyandmethodsto
ticenergyreportinghasbeenappliedin
recentyears[56]andcovers,byendof2002,65%tclear
whetherautomaticreportingwillincreaordecreathewillingnessofwindturbine
operatorstosubmitcoldclimateincidentreportsoncemanualreportingisnolonger
mandatory.
37
Datacollectedthroughthemandatoryreportsshowthatnumberofincidentsofcold
climatereportingareincreasing,figure12.
Reportedcoldclimatehours&numberofincidents
0
500
1000
1500
2000
2500
3000
3500
J
a
n
-
0
0
A
p
r
-
0
0
J
u
l
-
0
0
O
c
t
-
0
0
J
a
n
-
0
1
A
p
r
-
0
1
J
u
l
-
0
1
O
c
t
-
0
1
J
a
n
-
0
2
A
p
r
-
0
2
J
u
l
-
0
2
O
c
t
-
0
2
Quarter
H
o
u
r
s
0
5
10
15
20
25
30
N
u
m
b
e
r
o
f
i
n
c
i
d
e
n
t
sHoursreported
Numberofincidents
Sweden2000-2002
8022hrs,92incidents
ynumberofreportedcoldclimatedowntimeandnumberof
incidents.
Anassumedreasonfortheincreasingnumberofreportedcold
climaterelatedincidentsisthefactthatwindturbineswerebuilt
recentlyinareaswithmoreextremecoldclimateconditions,
Figure13.
Thevariouscausofincidentsareshownforiceandlow
temperatureinFigure14andFigure15respectively.
coldclimate
region.
38
39
Incidentslabelledascaudby"Ice"
0
10
20
30
40
50
60
70
RotorbladeBlade(hull)WindindicatorTemperatureOther*
%
%oftime
%ofcounts
*=Pitch(hydraulic),Elctric(fu),Controlsyst.,Controlcomputer,
Controlsyst.(cable,contacts),Vibration,Wholeturbine,Unknown
Sweden2000-2002
7354hrs,72incidents
fincidentsduetoice.
Incidentslabelledas"lowtemperature"
0
5
10
15
20
25
30
35
40
45
50
P
i
t
c
h
P
i
t
c
h
(
h
y
d
r
a
u
l
i
c
)
P
i
t
c
h
(
b
e
a
r
i
n
g
)
C
o
n
t
r
o
l
c
o
m
p
u
t
e
r
G
e
a
r
b
o
x
H
y
d
r
a
u
l
i
c
Y
a
w
e
n
g
i
n
e
%
%oftime
%ofcounts
Sweden2000-2002
668hrs,20incidents
fincidentsduetolowtemperature.
Thereare16(3withunknownco-ordinates)windturbineslocatedwithinthemaincold
reshownintable3:
rbinetypeswithincoldclimateregion
#ManufacturerModelRatedpower[kW]Control
10NEGMiconNM900/52900/200stall,2speed
1NEGMiconNM750/48750/200stall,2speed
1NEGMicon750kW750/175stall,2speed
1*NEGMiconNM72C/15001500/400activestall,2speed
2BonusMkIV600/120stall,2speed
1(2*)VestasV52-850850pitch,variablespeed
1VestasV66-1051750pitch,variablespeed
0(1)Nordex600kW600/125stall,2speed
19(Total#ofwindturbines)
*notincludedinnationalstatistics
Thegeographicallisting,fromsouthtonorth,aswellas1stdateofoperationareshown
inTable4:
phicallisting,fromsouthtonorth,and1stdateofoperation,ofprent
windturbineswithinthemaincoldclimateregion.
#LocationDateManufacturerModel
1Äppelbo00-12-17NEGMiconNM900/52
0*(1)Rodovålen198-10-21Nordex600kW
1Rodovålen298-10-07BonusMkIV,600kW
1Rodovålen398-10-23NEGMicon750kW
1Rodovålen03-01-01VestasV52-850
1Bydalen02-09-04NEGMiconNM750/48
1Gråsjön,Kall00-11-08VestasV66-105
3Klimpfjäll01-01-16NEGMiconNM900/52
1Suorva98-10-13BonusMkIV
6Viscaria,Kiruna01-09-18NEGMiconNM900/52
1**Digerberget02-01-01NEGMiconNM72C/1500
1**Almåsa,Krokom?VestasV52-850
1**Vallrun,Krokom?VestasV52-850
19(Total#ofwindturbines)
*replacedbyaV52-850notyetincludedinnationaloperationalstatistics
**turbinesnotyetincludedinnationaloperationalstatistics
Prolongedreduced,aswellasabnt,windenergyproductionfromwindturbinesdueto
hexamplecanbedetectedinthe
operationalstatisticsfromthesouthernmostwindturbinelistedabove;Ä
16showsthemonthlyenergyproductionfromtheÄppelboturbinedividedbythe
averagedittofromtwoidenticalwindturbineslocatedinthesouthernpartofthe
40
rgyoutputinDecember2002canbeentohitarecordlowduetoice.
Theturbinedoesnothaveheatedblades.
RelativeperformanceofÄppelboNM900/52
-50
0
50
100
150
200
250
Jan-01Apr-01Jul-01Oct-01Jan-02Apr-02Jul-02Oct-02Jan-03
%
yenergyproductionfromtheÄppelboturbinedividedbythe
averagedittofromtwoidenticalwindturbineslocatedinthesouthernpartofthe
country.
AccesstooffshoresitesinsouthernSwedenhasbeenlimitedduringthepastwinterdue
toice,17showssuchan
dfarmisclobutyetsofaraway.
41
tooffshorewindfarmsinsouthernSwedenhasbeenlimiteddueto
ice.
Thepastwinter,2002/2003,icebuild-upsonwindturbinebladeshavebeenreported
pleofsuchanoccurrenceis
dwascalmandproductionlossweresmallinthis
kofbeinghitbyapieceoficebeingshedfromastartingwind
odynamicdragofaflyingpieceofice
needtobeincludedinriskzonecalculations,asthisrightfullywillreducethesizeofthe
affectedriskzone.
42
ld-uponawindturbinebladeduringwinterof2002/2003.
5.3.3Norway
Norwayhasalongshorelinefacingthewarmwatersoftheeasternpartofthenorth
ssuresystemsforminginthepolarjetstreamareasover
thewarmAtlanticwatersmoveeastwardandensurehighwindspeedsandamild
podIslandsandridgesalongthecoastare
edtootherareasintheworldatthesamelatitude,
hCape(71º),-4ºCisthe
lowestmonthlyaveragetemperatureatalevel.
Norwaydoesnothaveacentralizedsystemforcollectionofoperationalexperience
sfordowntimeduetoicingorlowtemperaturearetherefore
notavailable.
Sofar2003,97MWofwindpower,estwind
farmHavøygavlenislocatedatLatitude71ºoughit
isthenorthernmostwindfarmintheworld,
averagewinter(January)temperatureisabout-6ºdfarmwasinstalled
autumn2002,ingtotheoperator,very
43
meminorproblemswithbatteriesandoil
possiblyduetolowtemperaturehavebeenreported.
Nord-TrøndelagElektrisitetsverkhaxperiencewithoperationofwindturbinessince
indturbinesarelocatedinthemiddleofNorway,aroundlatitude65º.One
VestasV66hasbeeninstalledat230mabovealevel,andasmallwindfarmis
heinstallationofthewindturbinesthere
omeyears
ofusagetheturbineswereequippedwithheatingofthehydraulicoiltoprevent
problemsrelatedtorestartinlowtemperatures.
elocatedat
Latitude62ºyarcticadaptationmadeisthe
rtotheturbinesatHavøygavlen,theyhaveno
ousproblemswithlowtemperaturesoricinghavebeen
asbeenreportedoccasionallyatthetimeofstandstillofthe
eenpossibletostartturbineswithbladescoveredwithicebyforced
heforcedstarticehasshedfromtheblades.
5.3.4Switzerland
Switzerlandhaslongexperienceofwithwindenergysiteasssmentsinalpineareas.
Suchsitexperienceharshclimaticconditionssuchaslowtemperatures,high
turbulenceandextremegusts.
InSwitzerlandveralwindenergyprojectshavebeencarriedoutinicingandinlow
rbinesthatexperienceicingandlowtemperatureslocateat
desrangefrom1300metreto3000metreabovethealevel.
Typicallysitesbelow2000metreabovealevelexperiencelighticingandsiteswith
antexperienceon
theuofwindenergyunderclimaticallyextremeconditionswillbegained,withthe
800kWplantontheGuetschnearAndermatt(2300mabovea-level)whichwas
thefirstwindturbineinSwitzerlandthatus
rprojectssuchas
(2200mabovea-level)aswellasCrêtMeuron(1300mabovea-level),
willincreatheknowledgeaboutwindenergyproductioninalpineregioninharsh
climaticconditions.
5.3.5USA
Operationalexperienceofwindturbinesincoldandicingclimatesislimitedandthe
private,unsubsididnatureofmostinstallationsmakecollectingdataonsystem
downtimedifficult.
Asstatedpreviouslywindturbineshavebeinginstalledinthreegeneralclimatic
orthcentralregion,suchasthe200MWwind
plantsintheLakeBenton,Minnesotaarea,snowfallandcoldtemperaturesarecommon
44
orsintheregionshave
orth-east
andnorthwestpartsoftheUS,suchasthe6MWplantinSearsburg,Vermont,turbines
arelocatedonlowaltitudemountainridgesorincoastalregimeswhereicingis
common,b
mostcasprecipitationisintheformofsnow,whichdoesnotimpactturbine
mercompanyUSWindpowerconductedextensivetestsofwind
ghaltitudemountainridge
experiencedverrimeiceandcold,herearchfromthe
sites,whichwereactiveinthemidtolate1980’ersites
areatmuchlowerelevationsandthusdonotexperiencethesamerimeiceconditions.
Thelastclarificationofsitesarealongthearcticcoast,suchasthe0.5MWplantlocated
inKotzebue,itesdoexperiencecoldtemperatures
andhighdensityairflows,es
installedintheareasareoutfittedwithcoldweatherpackages,includingoilheaters
theturbinesinstalledhaveincludedbladeheating
options,otherthentheuofblackpaintedblades.
Ofthesitesoutfittedwithgovernmentalsupportedmonitoringsystems,reportsof
downtimeresultmoreduetoturbinemaintenanceincoldclimatesascomparedtoactual
operationalissues.
5.3.6Canada
OneoperatorinCanadahasidentifiedoverproductionincoldtemperatureshasbeingits
600kWTackemachinelocatedinTiverton,
Ontario,cond-averagedpowerpeaksof950kWwererecordedin-20°Cweatherand
thegeneratoroverheatedandtrippedout[13].Alsoona65kWBonusmachinelocated
inKuujjuaq(58°N),a5-minuteaveragepoweroutputof89kWwasrecorded[13].
YukonEnergyCorporationhasasignificantamountofexperienceinoperatingwind
panyowns
twoturbines:one150kWMarkIIIBonusandone660kWV47VestasinHaeckelHill,
Yukon(altitude1430meters).Theywereinstalledin1993and2000respectively[32].
Maissan[32]reportsthatlowtemperaturesteels,syntheticlubricantsandheating
systemsforitemslikegearbox,generatorandelectricalcabinetshaveworkedwell.
However,anemometersandaerialpowerlinesprovedtobeadverlyaffectedbyin-
tion,problemswereencounteredwiththeicedetectorthatcontrols
detectorwasremovedandthe
ricedetectorwasinstalledbutoutsidethe
rdedapproximately800hoursofrimeicingat
thesite[32].
BadontheexperiencesofYukonEnergy,Maissanidentifiesicingasprobablythe
axperimentedwithaprotectivecoatingontheirfirst
tiontothemoreobvioussolutionsfor
45
coldweatherclimates,herecommendsthatturbinesbefittedwithfullbladesurfaceice
protectionandwishedthatsuchasystemhadbeenavailableforthecondturbine
wouldliketoetheoperatingtemperaturerange
reachdownto-40°C[32].
46
6EXISTINGSTANDARDS,REQUIREMENTS
ANDRECOMMENDATIONS
6.1WINDTURBINES
Certifyingwindturbinesforcoldandmountainousregionsrequiresreliableprocedures
forthepredictionoftheamountoficeaccretionduringstandstillandoperation.
Internationaldesignstandardstakeicingloadcasintoconsiderationindifferentways.
TheIEC-61400-1WindTurbineGeneratorSystems-Part1SafetyRequirements
recommendstotakeiceloadsintoaccountbutaspecialloadcaisnotgivenandno
minimumicerequirementsaregivenforstandardwindturbines[34].Germanischer
Lloydrequiresthattwoicingcasforrotatingpartsandonefornon-rotatingpartsmust
atingpartsthetwocasare“all
bladescoveredwithice”and“allbutonebladeicedover”.Fornon-rotatingpartsicing
formulafor
calculatingthedesigniceloadsisgiven.[35,36]TheDanishEnergyAgencygivesit’s
laicecharacteristicsandformulafor
dsfromdynamicaicebehaviourare
advidtobenoticed,butnoclearrecommendationhowtoestimatethodynamic
ftherotatingpartsfollowstheguidelinesofGermanischerLloyd.
HoweveratNorthSeathedesignicethicknessisrecommendedtobeincreadfrom
30mmto150mmduetothewatersprayforpartslessthan20mfromthewaterlevel.
[37]
6.2RESOURCEESTIMATIONANDPOWERPERFORMANCE
MEASUREMENTS
TheIEC-61400-12WindTurbineGeneratorSystems-Part12Windturbinespower
performancetestingtsnorequirementsforequipmentsordatatreatmentudin
powerperformancetestinginlowtemperaturesorinicingclimate[38].
47
7SUMMARY
Windturbineshavebeenandarelocatedtosuchsiteswhereturbinesareexpodto
suchlowtemperaturesoutsidethestandardoperationallimitandtositeswhereturbines
faceicing,whichretardenergyproduction,tlycapacityof
about500MWlocatesonsites,whichcanbedefined,ascoldclimatewindturbinesites.
rbineshavebeen
recordedtooperateincoldclimateinScandinavia,NorthAmerica,EuropeandAsia.
peratureandicing
ed
measurementequipmentshouldbedesignedforlowtemperatureandicingclimateu.
yasmall
amountoficemayreducemeasuredwindspeedsignificantlyandlargeiceaccretions
mpleasmallamountofrimeonthecupsand
shaftofananemometermayleadtounderestimationofwindspeedabout30%atwind
speedof10m/earchhasbeendoneinthisfieldanddevicessuitablefor
tiontothe
measurementinstrumentsitlfotherpartsofthemeasurementsystemshouldalsobe
,connectorsandcabletiesspecified
atingfortheboomofwind
nsorsinvereicingclimatesshouldbeprovidedtoavoiddistortedresults.
Extensiveandreliabletemperaturedataiscommonlyproducedforweatherforecasts.
Suchtemperaturerecordingnabletheestimationofextremetemperaturesand
easurementsarehoweverrareandarenot
ssibletocalculateestimation
ofincloudicingfromvisibilityobrvations,whichincludecloudbaheight
hat
gisconsideredto
deterioratepowerproduction,itisadvisabletoaddicingmeasurementstoresource
estimationmeasurementsifsucharecarriedout.
ectorsformeteorological
sopossibletomeasureicingindirectlywithdew
hereisanalogybetweenanemometerandawindturbine,
persistencyoficingmaybeevaluatedeconomicallywithat-upoftwoanemometers,
ingtothecurrent
knowledgeicedetectorsaremostsuitableforicingtimemeasurementsandtherefore
alsoforcontrollingapossibleheatingdevis.
Meteorologistshavedevelopedmodelsforestimationofdifferenttypeofatmospheric
icingandtheeffectsoficingandfromotherstandpointaviationindustryhasdeveloped
modelstocalculateweightandshapeoficeaccumulationsontheleadingedgeofa
omplexity
oficingphenomenonandaerodynamicsaswellascurrentperformanceofmodern
48
personalcomputers,thedevelopmentofmoreaccuratemodelshasbeenmoderate.
Mapstodescribeannualicingtimehavebeendevelopedbutstandardidmethodto
calculatelocalicingtimefrommeteorologicalmeasurementsstilllacks.
Technicalsolutionsforwindturbinesoperatingatlowtemperatureoraticingclimate
peraturespecifiedmaterialsandoilsshouldbeudif
rbinemanufacturershave
tiontocold
specifiedmaterialsud,
tionto
ectors,
coatingsthatpreventicetosticktothebladesanddifferentbladeheatingsystemsare
available.
Windturbineshavebeensitedtocoldclimatesitesforsomeyearsandtodayoperational
dinaviadowntimeforolderturbineshavebeenrecordeddue
tolowtemperature,modernturbinesinsteadarealreadyadaptedtothelowtemperatures
peratureshavealso
recordedtoextendthedurationofmaintenanceandreparationbreaksduringwinter.
Severityoficingvariesalotdependingonlocalparameterspeciallyaltitude
asbeen
recordedtoretardenergyproductionatelevatedsitesinScandinavia,Alpineregionsof
orway
forexampleicinghavenothadthatkindofeffecttowindpowerproductionthatit
wouldhavebeenrecorded,eventhoughturbineslocateupto200mlevelabovealevel
usunderlinesthefactthat
rtolowtemperatureicingandsnowhas
y
reicingclimateofCanadaand
Finlandsystemsthatkeepbladesfreeoficehavebeenfoundcompulsory.
49
REFERENCES
[1]InformationonWindEnergyinColdClimates/
[2]StatisticsandinfoforSwedishwindturbines:.
[3]InfoforNorwegianwindturbines:.
[4]InfoforSwisswindturbines:.
[5]InfoforUSAwindturbines:.
[6]InformationforCanadianwindturbines:.
[7]InfoforFinnishwindturbines:/ene/tuloksia/.
[8]Laakso,T.,Follow-upofwindparkinOlostunturi(inFinnish)2001,VTTEnergy,
Espoo.62p.+rgyreports24/2001.
[9]Marjaniemi,M.,Laakso,T.,Makkonen,L.,Wright,J.,ResultsofPoriwindfarm
measurements,2001,VTTEnergy,Espoo.83p.+app.5p.
[10]Antikainen,P.,Peuranen,S.,Iceloads,V,Windpower
productionincoldclimates,ProceedingsofanInternationalconference,Levi,Finland
hMeteorologicalInstitute.
[11]Tammelinetal,Meteorologicalmeasurementsundericingconditions–Eumetnet
SWSIIproject,FMIreports2001:6
[12]Peltola,E,MarjaniemiM,StiesdalHandJärvelä,JAnicepreventionsystemfor
thewindturbineblades,1999EuropeanWindEnergyConference,1-5
March1999,Nice,France,pp.1034-1037.
[13]Leclerc,C.,Masson,C..AbnormalHighpoweroutputofwindturbineincold
weather:dingsoftheCanWEASeminarandthe15th
CanWEAConference&TradeShow'ber27-28-29,Rimouski,Canada.
CanadianWindEnergyAssociation,1999.P.190-199.
[14]Lemström,B.,Mannila,P.,Marjaniemi,M.,Operationalenvironmentfor
generatorsinwindturbines,1999EuropeanWindEnergyConference,1-5
March1999,Nice,France,pp.825-828.
[15]Stiesdal,H.,Kru.H.,10Yearswitharcticmodificationsamanufacturer’s
experience,ProceedingsoftheBOREASIVconference,Hetta,Finland1998,Finnish
MeteorologicalInstitute.
[16]Hughes.“ColdClimateTestingofDouble-endedFiberglass/SteelRootStud
SubstructuresforWindTurbineBlades”PrentationattheAmericanWindEnergy
AssociationConference,WashingtonDC,June3-7,2001
[17]/
[18],archfor“cableties”.
50
[19]Tammelin,B.,Cavaliere,M.,Holttinen,H.,Morgan,C.,Seifert,H.,Säntti,K.,
WindEnergyProductioninColdClimate,MeteorologicalPublicationsNo.41,Finnish
MeteorologicalInstitute,Helsinki.41p.,2000.
[20]Tammelin,B.,Säntti,K.,IcinginEurope,ProceedingsoftheBOREASIV
conference,Hetta,Finland1998,FinnishMeteorologicalInstitute.
[21]Laakso,T.,Holttinen,H.,WindenergystatisticsofFinland,Yearreport2001,
VTTProcess,Espoo.39p.+/T7511/02.
[22]Tammelin,B.,Seifert,mantaras,K.,roceedings
ofBOREASIV(inetal.).FinnishMeteorologicalInstitute,Helsinki.
Inprint.
[23]Tammelin,B.,ormationonanemometersandfrostprevention
hmeteorologicalinstitute.34pp.
[24]Tammelin,B.,dings
ofBOREAS(inetal.).Finnishmeteorologicalinstitute.p.241-261.
[25]Kenyon,P.R.,etryinNewEnglandmountainicingenvironments.
InproceedingsofBOREASII(inetal.).Finnishmeteorological
institute.154-163.
[26]Botta,aliere,anemometerperformanceinicing
dingsoftheEWEC’99,Nice,t.
[27]UrsmanualofLabkoLID-3200.
[28]InstallationandoperationmanualofInstrumarIM101v2.4.
[29]Makkonen,L.,Jäändetektointikosteusmittauknavulla,Reporttothefoundation
ofVilho,YrjöandKalleVäisälä/FinnishScienceAcademy,2000,inFinnish.
[30]TammelinB.,Icingofanemometeranditffectonestimationofwindenergy
IIconferenceproceedingspp.85-96.21–25March1994,
Pyhätunturi,hMeteorologicalInstitute,Helsinki.
[31]Tammelin,B.,Joss,palainen,J.,eportontheEUMETNET
project“SpecificationofSevereWeatherSensors”.FinnishMeteorologicalInstitute,
Helsinki.154p.
[32]MaissanJ.F.,Windpowerdevelopmentinsub-arcticconditionswithvererime
icing,,Canada,May2000.
[33]CraigD.F.,CraigD.B.,MonitoringoficingeventsonfjellsinnorthernCanada.
InproceedingsofBOREASII(inetal.).Finnishmeteorological
institute.154-163.
51
[34]IECstandard61400-1:WindTurbineGeneratorSystems,Part1:Safety
Requirements,IEC1998.
[35]GermanischerLloyd,RulesandRegulationsIV-NonMarineTechnologyPart-1
WindEnergy,1993Edition.
[36]GermanischerLloyd,1993EditionofRulesandRegulations
IV-NonMarineTechnologyPart-1WindEnergy,March1998.
[37]TheDanishEnergyAgency,RecommendationsforTechnicalApprovalof
OffshoreWindTurbines,December2001.
[38]IECstandard61400-12:WindTurbineGeneratorSystems,Part1:Windturbines
powerperformancetesting,IEC1997.
[39]GoodrichSensorSystems:Model0871LH1IceDetector,SpecificationsSheet.
[40]Wright,W.B.(1999)UrManualfortheNASAGlennIceAccretionCode
/CR-1999/209409
[41]Messinger,B.L.(1953)EquilibriumTemperatureofanUnheatedIcingSurfaceas
lofAeronauticalScience27(1):29-42
[42]TroenI.,PeternE.L.,EuropeanWindAtlas,fortheEuropenCommission-Ris∅
NationalLaboratory,Roskilde,Denmark,1989.
[43]MakkonenL.,EstimationofWetSnowAccretiononStructures,ColdRegions
ScienceandTechnology,Vol.17(1989)83-88,ElvierSciencePublishersB.V.
Amsterdam.
[44]d,en,Proceedings,6thInternationalWorkshopon
AtmosphericIcingofStructures,IWAIS,Budapest(1993)79.
[45]d,en,Improvednumericalmodelforwindturbineicing,
Proceedings,7thInternationalWorkshoponAtmosphericIcingofStructures,IWAIS,
Chicoutimi,Quebec(1996)373.
[46]en,Modelsforthegrowthofrime,glaze,iciclesandwetsnowdeposits
ophicalTransactionsA358(2000)2913.
[47]en,gionsScience
andTechnology10(1985)105.
[48]en,rass,Iceaccretiononcylindersandwires,National
,TechnicalReportno.23649(1984)44pp.
[49],,Experimentalevidenceformodyfyingthecurrentphysical
modelforiceaccretiononaircraftsurfaces,Proceedings,ThirdInternationalWorkshop
onAtmosphericIcingofStructures,IWAIS,Vancouver(1991)58.
52
53
[50]Tammelin,B.,Cavaliere,M.,Holttinen,H.,Morgan,C.,Seifert,H.,Säntti,K.,
WECOFinalreport,2000,EuropeanCommission,Brusls.142p.
[51]e-mailfromNordexEnergyGmbH.
[52]e-mailfromNordicWindpowerAB.
[53]e-mailfromLagerwey.
[54]Makkonen,L.,Laakso,T.,Marjaniemi,M.,Finstad,K.J.,Modellingand
PreventionofIceAccretiononWindTurbines,WindEngineering25(2001)3.
[55]/varme/underlag/
[56]/
[57]RonstenG.“Candelayedstallbecaudbyiceaccretionontheleadingedgeofan
airfoil?”,FFAP-A-981,Stockholm,1993
[58]GananderH,“WP3:ModellingofIceloads”,ProceedingsoftheBoreasVI
conference,Pyhätunturi,Finland,April9thto11th,2003
本文发布于:2022-12-27 02:48:53,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/37634.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |