Available online at、^,vvw.scienCedireCt.com
一
一
黪二 ScienceDi rect
Acta Mathematica Scientia 2011,31B(6):2122—2130
数学物理学报
http://actams.wipm.ac.cn
EXISTENCE AND UNIQUENESS OF SOLUTIONS
FoR N0NLINEAR FRACTIoNAL DIFFERENTIAL
EQUATIONS WITH NoN—SEPARATED TYPE
INTEGRAL B0UNDARY C0NDITIoNS
Dedicated to Professor Peter D.Lax Oil the occasion of his 85th birthday
Bashir Ahmad1 Juan 1 Nieto1 2 Ahmed Alsaedi1
1.Department ol Mathematics}Faculty of Science}King Abdulaziz University,
P.0.Box 80203,Jeddah 21589,Saudi Arabia
2.Departamento de Andlisis Matemdtico,Facultad de Matemdticas,
Universidad de Santiago de Compostela,1 5782,Santiago de Compostela,Spain
E—mail:bashir—qau@yahoo.corn;juanjo8e.nieto.roig@usc.es;aalsaedi@hotmail.corn
Abstract In this paper,we study a boundary value problem of nonlinear fractional dif-
ferential equations of order q(1<q 2)with non—separated integral boundary conditions.
Some ilew existence and uniqueness results are obtained by using some standard fixed point
theorems and Leray—Schauder degree theory.Some illustrative examples are also presented.
We extend previous results even in the integer case q 2.
Key words fractional diferential equations;non-.separated integral boundary condi—-
tions;contraction principle;Krasnoselskii’S fixed point theorem;Leray—
Schauder degree
2000 MR Subject Classificati0n 26A33;34A12;34A40
1 Introduction
Integral boundary conditions have various applications in applied fields such as blood flow
problems,chemical engineering,thermoelasticity,underground water flow,population dynam—
ics,etc.For a detailed description of the integral boundary conditions,we refer the reader,for
example,to the recent papers[2,15].
Fractional derivatives provide an excellent tool for the description of memory and hered—
itary properties of various materials and processes.These characteristics of the fractional
derivatives make the fractional—order models more realistic and practical than the classical
integer—order models.As a matter of fact,fractional differential equations arise in many engi—
neering and scientific disciplines such as physics,chemistry,biology,economics,control theory,
Received May 4,2011
No.6 B.Ahmad et ah EXISTENCE AND UNIQUENESS OF SOLUTIONS 2123
signal and image processing,biophysics,blood flow phenomena,aerodynamics,fitting of ex
perimental data,etc.f7,20,21,231.In recent years,boundary value problems of fractional
differential equations involving a variety of boundary conditions have been investigated by sev
era1 researchers,for instance,see『l,4,5,7,8,12,14,19,25]and references therein.For some
recent work on boundary value problems of fractional order with integral boundary conditions,
we refer the reader to the papers f3,6,9,13,16,18,22]and the references therein.In the work
on fractional integral boundary value problems,the following types of the integral boundary
conditions on an interva1『0,T1,T>0 or 10,1 l are commonly used:
) (。):T
g(sj ))ds. ) ( )= , ))ds
(。)+ (。)=r
0
1 91( (s))ds a (1)+ (1)=1
g2( (s))ds..
Observe that the above integral boundary conditions are of non-separated type.To the best
of our knowledge,fractional boundary value problems dealing with non-separated type integral
boundary conditions have not been investigated SO far.
In this paper.we discuss the existence and uniqueness of the solutions for a new class of
boundary value problems of nonlinear fractional differential equations with non—separated type
integral boundary conditions.Precisely,we consider the following problem
。D x(t)=f(t, (t)),t∈[0,T],T>0,1<q 2,
x(O)~ ̄lX(T)= 1/g(s,x(s))ds,
J0
Xt(0)一 2 ( )= 2/^(s,x(s))ds,
O
where。Dq denotes the Caputo fractional derivative of order q,f,g,h:[0,T]× are given
continuous functions and 1, 2, 1, 2∈Ⅱ with 1≠1,A2≠1.
2 Preliminaries
Let US recall some basic definitions[1 7,23].
Definition 2.1 For q>0,the Riemann-Liouvil]e fractional integral of order g is defined
㈤=而1/0 ds
provided the integral exists.
Definiti0n 2.2 For a continuous function :【0,。o)-.÷ ,the Caputo derivative of
fractional order q is defined as
。D x(t、= r(n
q) 一s)n--q--ix(n)(s) 札一1<q< _[q
where[q]denotes the integer part of the real number q
2124 ACTA MATHEMATICA SCIENTIA Vo1.31 Ser.B
Lemma 2.3 The fractional integral boundary value problem(1.1)is equivalent to the
following integral equation
)=T G ))d
s+
T
g( (s))ds,
where c(t,s)is the Green’S function given by
a(t,8)
s, x(s))ds
(t—s)q一 1( 一s) 一 Az[A1T+(1-一
A
.1)t]—
(T-
—
s)q-2
一r(g) ( 1—1)r(q)。 ( 2—1)(AI一1)P(q一1)
入1(T—s)q一 .入2 1T+(1一入1)t】( —s) 一
( l一1)r(q)。 ( 2—1)(A1—1)F(q—1)’
s t,
t<8
Proof We omit the proof as it employs the standard arguments,for instance,see[3,l 1].
口
In view of Lemma 2.3,we transform problem(1.1)as
where F: ([0, ], )— c([0, 】, )is
(rx)(t) t
—
(t- 8)q-1 f(
s,
X=F(x)
(s))ds一∈1 1
+∈ z[ ( 一£)+t]
+∈ [入 (T—t)+t]
∈1=
厂T ,(s, (s))d—而厂八 Ju
筹,(s s))ds
^(s, (s)ds-#1∈ T
夕(s, (s)ds, ∈
1 l
’{ =硕
[0,T]
Observe that problem(1.1)has solutions if the operator equation(2.2)has fixed points
3 Existence and Uniqueness Results
(2.2)
Let c: (f0, 1, )denotes the Banach space of all continuous functions from[0,T]—÷
endowed with the norm defined by 1=sup{Ix(t)1,t∈【0, ).
For the forthcoming analysis,we need the following assumptions:
(A1)Vt∈【0, ], ,Y∈R,there exist positive constants i(i=1,2,3)such that
(i)lf(t, )一,( , )l LI[X—yl,
(ii)l9(t,z)一9(t, )5 L21x一 l,
(iii)1h(t,z)一h(t, )l L31x一 l;
(A2)7l=—LI—T—q(—I+—I—(I A 1]+干I可{z—A2(I+—A—1)Iq)+ 3l∈2 2(1+ 1)l 。+L2l 1∈1IT<1
(A3)v(t, )∈【O,T]× ,let
,(t,5)1 pl( )+c11z1肌,19(t,x)l p2(t)+c21xl p2,Ih(t,z)l p3(t)+c31 1 。
No.6 B.Ahmad et al:EXISTENCE AND UNIQUENESS OF SOLUTIONS 2125
where 0<pl,P2,P3<l,and Cl,C2,C3 are nonnegative constants.Furthermore,
ll= sup 1pi(t)l,i=1,2,3
t6[o T】
Theorem 3.1 Assume that(AI)and
has a unique solution.
Proof Let US set
sup I
t∈【O,T】
and consider Br
f(t,0)
(A2)hold.Then the boundary value problem(1,1)
M1,sup 1g(t,0)l=M2,sup lh(t,0)l=M3
t∈【o,T]t6[0,T】
{ ∈c:Ilxll r),where r≥ ,with
MIT。(1+l∈l 11+1 ̄2A2(1+A1)lq)
r(q+11 +尬f 2(1+A1)rT。+ f 1∈1IT
and 1 given by the assumption(A2).Now we show that FBr c Br,where F:c—}c is defined
by(2.5).For ∈Br,we have
(Fx)(t)1 { ,(s, (s))1ds+l∈ ,/o 三 If(s, (s)) ds
+feA2[A1T+(1一A1)t]
+『∈2 2[AiT+(1一A1)t】
/oT
e f,(s, ( r(口一1) 川
(s,z(s))Ids+I ∈ I T Ig(s, (s))Ids)
(s_ ,(s)0) s)0)1)ds
fT
+l∈1 1l/
0 i ;'-昙; 二(I,(s, (s))一,(s,。)I+If(s,。)1)ds
z[AIT+(1-A1 l s1q一2
r(q一1) (I/(8, (s))一.厂(s,0)I+1.厂(s,O)1)ds
+l∈2 2[AIT+(1一 1)t]l/(1^(s, (s))一 (s,0)l+1h(s,O)1)d8
t,0 J]Zl ̄ ,/oT。。s> + 1 (I_9(s, (s))一9(s,0)I+J夕(s,0)J)d
+尬)[ q-ida+ c ds
+l [ +(1一 ) ]l T
—
(T 而-8)q-2ds]
+(Lar+ ) [A1T q-(1一 圳 +( +M2)I I )
(, l_±_I __车 +L。l (1+ )IT。+ 。l ∈ l 、)r ~\、 r(q+1) ~
. 。 ’ 一 。//
+ + (1+A1)IT。+ ITF 。 f
q+11 。‘ ’ 。
=71r+ r
2126 ACTA MATHEMATICA SCIENTIA Vo1
.31 Ser.B
Now,for ,Y∈ and for each t∈【0,丁],we obtain
ll(rx)(t)一(ry)(t)ll
(s. ,(s s)]fjds
+l∈ A l T 三{ ; ll,(s, (s))一,(8, (s))_Id
+l∈2A2 1 +(1一A1)t]
. +f +(1一 f T
f(s, (s))一f(s, (s))lIds
h(8,z(s))一h(s, (s))fds
+I ∈ l l9(s, (s))一g(s, (s))lds)
J Jx一
<
su p q-ld8+ ds
+I{2 ̄k2[A1T+(1一 1)叫 ds]
+L3[ ̄2#2[AIT+(1一A1)t]IT+L2 J l∈1l
( +l 1 1I+l ̄2A2(1+A1)lq)
7lllz—Y
)
+ 3f 2(1+ 1){T2+L2( 1 I 、l(1 一
Observe that 71 depends only on the parameters involved in the problem
.As 3'1<1 fA,1
therefore厂is a contraction
.Thus,by the contraction mapping principle(Banach fixed point
theorem),it follows that problem(1.1)has a unique solution. 『]
Now,we prove the existence of solutions of(1.1)by applying Krasnoselskii’s fixed Doint
theorem[24].
Theorem 3.2(Krasnoselskii’s fixed point theorem)Let M be a closed convex and
nonempty subset of a Banach space
.Let A,B be the operators such that(i)4 +B ∈M
whenever ,Y∈M;(ii)A is compact and continuous;(iii)B is a contraetion m印Ping.Then
there exists ∈M such that =Az+Bz
. Theorem 3.3 Suppose that the assumptions(A1)and(A3)hoid with
L
1
Tq(
..
I ̄I
—.
A
...
1 l+
.....
1[2
—.
A
...
z(
.
1
...
+
A
— .
1
..
)
.
1q
——
)
r(q十11 +L31(2#2(1+A1)IT +L2l 1 1IT<1
Then the boundary value problem(1.1)has at least one solution on[0,TI.
Proof Let US consider =x∈ :f rxff F},where
m ̄{SHpl ,slip2 ,slip3 ,(6ClV1) ,(6c2v2) ,(6c3v3) )
/21
Tq(1+111Al1+]sc2A2(1+A1)Jq)
F(q+11 re(1iT,//3=【∈2 2(1+A1)IT。
(3.
(3.
To write厂as a sum of a compact operator and contractive operator
,we define the operators
F1 and F2 Oil B as
( ,(s s))ds,
NO.6 B.Ahmad et al:EXISTENCE AND UNIQUENESS OF SOLUTIONS 2127
(厂。 )( )=一∈ 三 ,(s
, (s))ds
+ 。[ +( 一 ) 】 T! )_ ‘厂(s, (s))ds
+∈ [ +(1一 ) 】 T九(s, (s)ds-Pl∈ T
g(s, (s)ds
For X,Y∈ ,by(3.2)and(3.3),we find that
厂 +F lJ L ! 老 鱼
+J 2(1+ ̄I)IT (1ip3lI+c3( ) 。)+J 1 1 JT(IIP21 J+c2( ) 。)
<
——
<
Thus,Fix+F2y∈ .It follows from(3.1)
f implies that the operator厂1 is continuous.
that厂2 is a contraction mapping.Continuity of
Also,F l is uniformly bounded on B亨as
Flxll fIpll lTq
r(q+1)
Now we prove the compactness of the operator厂1.In view of(A1),we define
and consequently we have
(r ̄z)(t1)一( l )( 2)
sup If(t, )J=f
(t,x)∈[o,T]×口-
=lI而1 。。 _s)a If(s, ))ds+
而,-I2(t2-t1)
which is independent of and tends to zero as t2_t1.Thus, l is relatively compact on
Br.Hence,by the Arzelg-Aseoli Theorem,F 1 is compact on Br.Thus all the assumptions of
Theorem 3.2 are satisfied.So the conclusion of Theorem 3.2 implies that the boundary value
problem(1.1)has at least one solution on[0, . 口
Remark 3.4 An analogue form of Theorem 3.3 with Pl,P2,P3>1 in( 3)can be
proved by applying the similar arguments.
Our next result is based on Leray-Schauder criterion.
Theorem 3.5 Assume that there exist positive constants ,Vi(i=1,2,3)such that
If(t, )I 且Tq l I+1]1,Ig(t, )l 等I I+ ,lh(t, )I 监T2 lXl+//3 for all t∈[0, ],X∈ and
。<( + 。I&p2(1+ )J+ 2 J ∈ J1<1
Then the boundary value problem(1.1)has at least one solution
铅
+
p
+
+
以
+ 一6
+
一6
+
m『一6
+
一6
S
d
、l,
、l,
S
/
S
,,
,J
~
q
、,,
S
一
2
,
2
2128 ACTA MATHEMATICA SCIENTIA V01_31 Ser.B
Proof In view of the fixed point problem
least one solution X∈碾satisfying(2.2).Define
(2.2),we just need to prove the existence of at
a suitable bal1 Bu with radius R>0 as
BR={ ∈ [0, ]:
t
m∈[0a
,
x
]
I茁(亡)}<R)
where R will be fixed later.Then,it is sufficient to show that F:BR c[0,T]satisfies
Let US set
z≠ FX, V z∈OBR and V ∈[0,1】
日( ,X)=AFx, ∈c(x)A∈[0,1]
(3.4)
Then,by Arzela—Ascoli theorem,hx(x)= —H(A, ):z—AFx is completely continuous.If
(3.4)is true,then the following Leray—Schauder degrees are well defined and by the homotopy
invariance of topological degree,it follows that
deg(h ̄,BR,0)=deg(I~ 厂,BR,0)=deg(hl,BR,0)
=deg(h0,BR,0)=deg(I,BR,0)=1≠0,0∈B
where I denotes.the unit operator.By the nonzero property of Leray—Schauder degree,hl(t)=
X—AFx:0 for at least one ∈BR.In order to prove(3.4),we assume that z=AFx for some
∈[0,1]and for all t∈[0,T]SO that
! {_ If(s,z(s))}ds+1∈ )、 ,/oT 三 If(s, (s))lds
+l∈z z[AIT+(1~ )≠l,/0 ; If(s, (s))『ds
+J∈2 2 1 +(1一A1)t]f/l (s,x(s))tds+J 1∈1l/f9(s,x(s))lds P』 』
,n ,n ( )
+l 。 。Jl +(1一 )t,/oT ds+
f —
l∈1入
s1q一2
r(q一11
/0T
ds]
s1q~
r(q) ds
+( + ) z[A1T+(1-/ ̄1 ( + )
(,兰 鱼 + "2tlf 1, 0(1+,A、. )+ I ∈ 1j \l一十 l广0f I l十 1 ll十 0 J,^1广1 l Il:,:一\、 r(g+1) ’ 、 。 。’。 。/『 一
+(
which,on taking norm(sup
tE[0,T】
where
pl:
+ l z (1+ )I 2+ j ∈ { 、
( )I=IIxl1)and solving for lIxll,yields
II
1(1+l∈1A1 l+l ̄2A2(1+A1)lq)
P(q+11 +/;31 ̄2/A2(1+ 1)} + 2I/AI ̄I
NO.6 B.Ahmad et al:EXISTENCE AND UNIQUENESS OF SOLUTIONS 2129
牿 + 。 1 )IT 1 ITr( q+11 一。0 、 ’ l
CD3/ 2x(t)=(
t
1
2)ft an-lx"t[01 1]1
Here,q=3/2,A1=一1/2,A2=-4/5, 1 9( , )=鼎, (£, )= ,and 1/3, 2=1/5,f(t, ) 而 tan
,( , )一,(t,y)l Ix-Yl,19( , )一g( , )l 丢Ix-Y L,Ih( , )一h(t,y)l 去l 一
Clearly,L1
1=
1
,
L2= 1
,
L3= 1
.Furthermore
1(1+I∈1 ll+l ̄2A2(1+A1)lq)
r(q+11 + 2 2(1+A1)1+ 2I I=丽14+ 5<1
Thus,by Theorem 3.1,the boundary value problem(3.5)has a unique solution on
Example 3.7 Consider the ̄llowing boundary value problem
Here,q=3/2, 1
CD3/2
辛
x(t)
㈩
=
1 sin(27r x) ̄Ix[ j
,+ = 1 (丽1 +
f(t,x)l=I sin(2 +可Ixl
lg(t, )
h(t, )
lz ¨I
1 )+
互1 十互I
So 1=/%2=1/2, 3=1/4,/21=/22:1,/23=1/2 and
三I
+
+
—一
(坐 z I I)= 28+而13
口
(3.5)
(3.6)
Thus,the conclusion of Theorem 3.5 applies to problem(3.6).
Remark 3.8 The results for an anti—periodic boundary value problem of fractional difer—
ential equations of order q∈(1,2]follow as a special case by taking 1:一l= 2, 1=0= 2
in the results of this paper(see[10]).For q=2,we obtain new results for a second order bound.
ary value problem with non-separated type integral boundary conditions.
引
2130 ACTA MATHEMATICA SCIENTIA Vo1.31 Ser.B
References
『11 Agarwal R P,Benchohra M,Hamani S.Boundary value problems for fractional difierentia1 equations.
Georgian Math J.2009.16:401141l
[2]Ahmad B,Alsaedi A,Alghamdi B.Analytic approximation of solutions of the forced Duffing equation
with integral boundary conditions.Nonlinear Anal RealⅥ,orid Appl,2008.9:1727—1740
【3]Ahmad b,Nieto J J.Existence results for nonlinear boundary value problems of fractional integrodifer—
ential equations with integral boundary conditions.Bound Value Probl,2009,Art ID 708576
f41 Ahmad B,Nieto J J.Existenee of solutions for nonlocal boundary value problems of higher order nonlinear
fractional difierential equations.Abstr Appl Anal,2009,Art ID 494720
f51 Ahmad B,Nieto J J.Existence results for a coupled system of nonlinear fractional difierentia1 equations
with three—point boundary conditions.Comput Math Appl,2009,58:1838-1843
『6I Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems of
fractional order.Nonlinear Anal Hybrid Syst.2010.4:134-141
【7]Ahmad B,Sivasundaram S.On four—point nonlocal boundary value problems of nonlinear integro—diferential
equations of fractional order.Appl Math Comput.2010.217:480-487
f81 Ahmad B.Existence of solutions for irregular boundary value problems of nonlinear fractional difierential
equations.Appl Math Lett,2010,23:390-394
19f Ahmad B,Ntouyas S K,Alsaedi A.New existence results for nonlinear fractional differential equations
with three—point integral boundary conditions Adv Di r Equ.2O11.Art ID 107384
[101 Ahmad B,Nieto J J.Existence of solutions for anti—periodic boundary value problems involving fractional
diferential equations via Leray—Schauder degree theory.Topol Methods Nonlinear Anal,2010,35:295—304
『1 l l Ahmad B.New results for boundary value problems of nonlinear fractional difierential equations with
non—separated boundary conditions.Acta Vietnamica,2011,36(3):to appear
【12]Bai Z.On positive solutions of a nonlocal fractional boundary value problem.Nonlinear Anal,2010,72:
916-924
fl3 7 Benchohra M,GraefJ R,Hamani S.Existence results for boundary value problems with nonlinear fractiona1
difrerential equations.Appl Ana1.2008.87:851 863
【14】Benchohra M,Hamani S,Ntouyas S K.Boundary value problems for diferential equations with fractional
order and nonlocal conditions.Nonlinear Anal,2009,71:2391 2396
【15]Boucherif A.Second-order boundary value problems with integral boundary conditions.Nonlinear Anal,
2009,70:364—371
f161 Hamani S,Benchohra M,Graef J R.Existence results for boundary value problems with nonlinear fractional
inclusions and integral conditions.Electronic J Differ Equ,2010,2010f201:1-16
[17]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Diferential Equations.
North—Holland Mathematics Studies,204.Amsterdam:Elsevier Science B V,2006
【18】Liu X,Jia M,wlu B.Existence and uniqueness of solution for fractional diferential equations with integral
boundary conditions.E J Qual Theory Dif Equ,2009,69:1-10
f 191 Nieto J J.Maximum principles for fractional difierential equations derived from Mittag-Lemer functions.
Appl Math Lett.2010.23:1248-1251
{20]Podlubny I.Fractional Differential Equations.San Diego:Academic Press.1999
[21】Sabatier J,Agrawal O P,Machado J A T.Advances in Fractional Calculus:Theoretical Developments
and Applications in Physies and Engineering.Dordrecht:Springer,2007
[22】Salem H A H.Fractional order boundary value problem with integral boundary conditions involving Pettis
integra1.Acta Mathematica Scientia 2011,31B(21:661—672
I23】Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives,Theory and Applications.
Yverdon:Gordon and Breach,1993
【24】Smart D R.Fixed Point Theorems.Cambridge:Cambridge University Press,1980
I251 Zhang S.Existence of solution for a boundary value problem of fractional order.Acta Mathematica
Scientia,2006,26B(2):220-228
本文发布于:2022-12-26 14:38:24,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/34264.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |