south china

更新时间:2022-11-27 15:44:39 阅读: 评论:0


2022年11月27日发(作者:秋天如何保养皮肤)

ADVANCES IN ATMOSPHERIC SCIENCES,VOL 25

NO.5,2008,824—840

Sensitivity Study of the Seasonal Mean Circulation

in the Northern South China Sea

HONG Bo (宏波)and WANG Dongxiao(王东晓)

Laboratory 1or Tropical Marine Environmental Dynamics,South China Sea Institute of Oceanology,

Chinese Academy of Sciences,Guangzhou 510301

(Received 13 September 2007;revised 28 January 2008)

ABSTRACT

A study of the circulation in the northern South China Sea(SCS)is carried out with the aid of a

three—dimensional,high—resolution regional ocean mode1.One control and two sensitivity experiments are

performed to qualitatively investigate the effects of surface wind forcing,Kuroshio intrusion,and bottom

topographic influence on the circulation in the northern SCS.The model results show that a branch of the

Kuroshio in the upper layer can intrude into the SCS and have direct influence on the circulation over the

continental shelf break in the northern SCS.There are strong southward pressure gradients along a zonal belt

largely seaward of the continental slope.The pressure gradients are opposite in the southern and northern

parts of the Luzon Strait,indicating inflow and outflow through the strait,respectively.The sensitivity

experiments suggest that the Kuroshio intrusion is responsible for generating the imposed pressure head

along the shelf break and has no obvious seasonal variations.The lateral forcing through the Luzon Strait

and Taiwan Strait can induce the southwestward slope current and the northeastward SCSⅥ rm Current

in the northern SCS.Without the lateral forcing.there is no high pressure-gradient zonal belt seaward of

the continental slope.The wind forcing mainly causes the seasonal variation of the circulation in the SCS.

The wind.induced water pile.up results in the southward high pressure gradient along the northwestern

boundary of the basin.Without the blocking of the plateau around Dongsha Islands,the intruded Kuroshio

tends to extend northwest and the SCS branch of the Kuroshio becomes wider and stronger.The analyses

presented here are qualitative in nature but should lead to a better understanding of the oceanic responses

in the northern SCS to these external influence factors.

Key words:northern South China Sea,circulation,wind forcing,Kuroshio intrusion,bottom topography

Citation:Hong,B.,and D.Wang,2008:Sensitivity study of the seasonal mean circulation in the Northern

South China Sea.Adv.Atmos.Sci,25(5),824-840,doi:10.1007/s00376—008—0824—8.

1. Introduction

The South China Sea(SCS 1 iS the largest marginal

sea in the tropics fFig.1a).Its deep central basin is

bordered by two broad shelf regions to the north and

south.each with a water depth of less than 200 m.

To the east and west.the continental slopes are very

ste印,with practically no continental shelf.The north.

ern shelf extends from Taiwan southwestward to 15。N,

and averages 150 km in width.The Luzon Strait.with

a sill depth of more than 2000 m,connects the SCS

with the Pacific Ocean.The intrusion of the Kuroshio

through the Luzon Strait has a direct influence on the

circulation in the northern SCS.

Corresponding author:HONG Bo,hongbo@scsio.ac.ci1

The upper.1ayer circulation in the SCS is primarily

controlled by the East Asian monsoon.Many interna-

tional projects have been put in practice in order to

better understand the East Asian monsoon and its in.

teraction with the SCS.The South China Sea Monsoon

Experiment(SCSMEX)is one of the projects,which

provided excellent datasets for studying the interac.

tion of the summer monsoon and the SCS circulation

(Ding et a1.,2004). Generally,the southwest mon.

soon prevails from June to September,and a much

stronger northeast monsoon takes over from Novem.

ber to March.The wind stress fields show that the

northeasterlv winds prevail over the whole region dur.

ing December-February,whereas weaker southeasterly

维普资讯

N0.5

HoNGAND、^,

ANG

(b)

100。E105。E110。E115~E120。E125。E

Fi

g.1.(a)Bottomtopograp

h

y(m)of

theSouthChinaSeaandit

ssurroundingre—

g

ions.(b)Thecurvili

nearorthogonalmodel

grids

s

uperimpodwith200and1000m

isoba

ths.Thebold1ine

ofshorefromthenorthernSCSco

astdenotes

theacross—shelf

tranctudinanal

ys.

100。E105

0E1100E115。E

120。E125。E

Fi

g.2.Climatolog

icalwindstress(Nm

q)andwindstresscurl(10“

Nm

q)in

winterandsummer(afterHeller

manandRonstein

1983).

windsoccupymost

partsoftheSCSduring

Jun}

August(Fi

g.21.Theas

onalmean

c

irculationofthe

SCShasbeeninves

ti

gated

previousl

y(e.g.,

W

yrtki

196

1

Xueta1.,1982

Lieta1.,1996

Fangeta1..1998

Chueta1.,

1999

;QUeta1.,

2000

Caieta1.,

2002

Yangeta1.

.2002

、veieta1..2003

Xueeta1.

.2004

Ganet

a1.,

2006).Mostofthest

udiesaresumma—

rizedin

areviewb

y

Hueta1.(20001.Ingeneral

t

he

northernSCScirculat

ionconsistsoftheGua

ng

dong

coa

st

alcurrent

theSCSwarmcurren

tfSCSWC),

the

slopecurren

t

andthemeso

scalecyclonicedd

y

tot

he

nor

thwestofLuzonIsland(alsocalledtheLuzonCold

Edd

y,

orLCE).Intheupperlayers

thenorthernslope

currentiScalledtheSCSbranchofKu

roshiofSCSBKl

b

y

Huangeta1.f199

21.Someofthefeat

uresareper—

sistent

yearroundfe.g.,SCSWCl,

whereasot

hershave

825

cleara

sonalvariat

ions(e.g.,

LCE).

Afterhavingreview

ed

previousstudies.Yangand

Liuf19981con

cludedthatsolar

radiation,

monso

onal

wind

andbottomtopograp

h

yc

ould

be

consideredas

themaininfluencing

factorsfort

heSCScirculation.In

thenorthernSCS,theinfluenceof

Kuroshiointrusion

should

be

addedintothofactors.Previous

studies

(e.g.,

Shaw

1991

;Que

t

a1.,

2000)indicatedtha

t

as

thenor

theastmonsoondevelopsin1ate

faUandwinter.

watersoftheNorthPaciflcori

g

inflowedhundredsof

kilometerswestwardalong

thecontinenta

lslope

oft

he

northernSCSandhaveanotableimpactont

hew

ater

propertiesint

heent

irenorthernSCS.Qiueta1.(1984)

alsono

t

edawes

twardcu

rrentalong

t

henorthernSCS

COntin

entalslopeinsummer./n.situcurrentmea

s

ure

ments

ofLiangeta1.f2003)revealedthatabran

chof

维普资讯

826 SENSITIVITY STUDY oN CIRCULATION IN NORTHERN SOUTH CHINA SEA

the Kuroshio intruded steadily and persistently into

the SCS;part of the intruded Kuroshio exited the SCS

via the northern Luzon Strait and reunited with the

main stream of the Kuroshio.

Several studies have noted that the Dongsha Is—

lands has a blocking effect on the westward intrusion

of the Kuroshio along the continental slope(e.g.,Ma,

1987;Hsueh and Zhong,2004).Hsueh and Zhong

(20041 proposed that the collision of the Kuroshio in—

trusion with the continental slope near Dongsha Is—

lands could induce pressure head along the continen—

tal shelf break.The intruded Kuroshio split into two

branches after the collision.The main stream of the

intruded Kuroshio veered toward the northeast and

eventually exited the SCS through the Taiwan Strait

and the northern part of the Luzon Strait.while the

remaining part was called the SCSBK.

The combination of surface wind forcing.Kuroshio

intrusion.and bottom topographic influence con—

tributes to the complex dynamics of the circulation in

the northern SCS.Numerical models can be important

tools in helping to separate these dynamics and clari

fy

the contributions of each influencing factor.The pur—

pose of this paper is to qualitatively investigate the

effect of different forcing factors on the circulation in

the northern SCS through a series of numerical exper-

iments.Wle focus on the oceanic responses to the in.

fluence of local wind forcing,lateral momentum flux,

and bottom topography,and analyze the associated

seasonal features of these processes.

The model configuration and numerical experiment

designs are introduced in section 2.Model-data corn—

parisons are given in section 3.Based on the agree—

ment between the simulations and the observations,

model results of a series of experiments are analyzed

in section 4 to investigate the responses of the circu—

lation in the northern SCS to difierent forcing factors.

Discussion and conclusions are provided in section 5.

2. Numerical ocean ITIOdel

The model used in this study is the Princeton

Ocean Model(POM).Briefly,the POM is a hydro-

static,free surface,sigma coordinate,primitive equa-

tion model,with an embedded turbulence submode1.

For an in—depth description of the mode1 and the an—

merical techniques,the reader is referred to Blumberg

and Mellor(1987).Details of the model configuration

used in this study are presented below.

2.1 Model configuration

In order to introduce realistic Kuroshio dynamic

processes at the Luzon Strait,the model domain is ex-

tended from the SCS to cover part of the North Pacific

and the East China Sea(Fig.1b).The horizontal

VoL.25

grid employs a curvilinear orthogonal system with a

variable resolution.Metzger and Hurlburt(2001)SUg-

gested that the accurate representation of the north-

south island chain within the Luzon Strait is important

in modeling Kuroshio intrusion.The use of curvilin—

ear grids allows us to better resolve the regions of steep

topography and intense mesoscale variability with rel-

atively less computationa1 load than the rectangular

grids.The model grids have higher resolution(about

13 km1 in the northern SCS and the western bound-

ary of the North Pacific and lower resolution(about

29 km1 in the southern SCS.The ETOP5 data set

provided by the National Geophysical Data Center

(NGDC1 is used to prescribe the model bathymetry

through bilinear interpolation.The maximum ocean

depth in the model is 5000 m and the minimum depth

is 10 m.The vertical sigma coordinate has 30 levels.

which are logarithmically distributed with higher res—

olution near the surface and bottom in order to better

resolve the surface and bottom Ekman 1ayers.

The mode1 iS initialized with the climatological an—

anal mean temperature and salinity data from the

Wl0rld Ocean Atlas 2001 Boyer et a1.,20051 with 0.25。

resolution.Surface wind stress is obtained from Heller-

man and Rosenstein(1983).A linear restoring scheme

of temperature and salinity is used in the upper 5

sigma 1evels.in which the relaxation time scale is set

to be 10 days at the surface and 60 days at level 5.

No heat or flesh water flux forcing are applied at the

surface since the surface heat and mass exchanges are

out of the scope of our sensitivity study.

The lateral forcing is from the simple ocean data

assimilation(S0DA;Carton et a1.,2000)reanalysis

products.W_e use SODA to provide open boundary

information for the regional ocean model because it is

one of the recognized data sets that have reasonable

circulations in the SCS—Pacific region.For example.

the annual mean bifurcation point for the North Equa-

torial Current is around 15。N in the upper layer.coin-

parable with the results of Qu and Lukas(2003).Using

the climatologicaI monthly mean values of SODA fav—

eraged over 1992 to 2001),a one-way radiative nesting

scheme proposed by Flather(19761 is used for the nor—

ma1 component of the velocity fields.It allows direct

connectivity between this regional ocean model and

the surrounding circulation,and keeps the same sea-

sonal cycle at each open boundary as that of SODA.

A sponge layer,as suggested by Israeli and Orszag

(19811,is used for absorbing the unwanted reflections

at the open boundaries. The upst】.eam scheme is

adopted fbr the open boundary conditions of temper—

aturle and salinit in which the prescribed v ues are

advected into the mode1 domain fbr the inflow condi—

tion.

维普资讯

No.5

HoNG

ANDWANG

Fi

g.3.Bottomtopograp

h

y(m)udinExp

tE2.Box

A

denotest

heareainwhich

t

hep

lateauaroundDongsha

Islandsisremov

edalongwi

ththeisland.

Lateralopenboundaryco

nditionsarevery

impor—

tan

t

forareg

ionaloceanmodel

toachieverealist

ic

simulations.Theprimaryruleforareasonableopen

boundaryconditionis

att

hefirst

order

t

heinflow

should

bebala

ncedb

y

the

outflow.Weestim

ated

thevolumefluxthroug

h

theopenboundaryof

this

reg

ionalmodel.Int

heannu

almean

thewestward

inflowthroug

htheeastern

openboundary

is33.16

Sv(1Sv=100

m

0

s

一),

thesouthwardoutflowthroug

h

the

southernopenboundary

is28.34Sv.andthe

nor

thwardoutflowthroug

hthenorthernopenbound

ary

is4.34Sv.Therefore.theinflowisnearl

y

balanced

b

y

t

heoutflows.

2.2

Numericalexpe

riments

Weperform

threenum

ericalexperiments:onecon—

trolrun

,p

lustwonsi

tivit

yrunsfTable1).Exoer—

imentE0fExp

t

E

01isthecontrolrun

inwhich

the

surfacewindforcingandbo

ttomtopograp

h

yarepre

scri

bed.ThepurpoofExp

tE0istoreproducethe

asonalcirculat

ionintheSCS.Sensitivi

t

y

Exp

t

E1

haszerowindstressforcing

during

thewholeintegr

a

tion

whichisaimedat

showing

theefectoflateral

fo

rcingonthecirculationint

henorthernSCS.InExp

t

E2

weremovet

hep

lat

eauarou

ndDongshaIslandsb

y

adjustingandsm

oot

hing

thebottomtopograp

h

y

in

boxAofFi

g.3

whichalsoshowsthemodifiedtopog

827

rap

h

y.Exp

tE2i

su

dtoinvest

i

gatetheinfluenceof

bottomtopograp

h

yonthecirculat

ioninthe

northern

SCS.especiall

y

t

hepathoftheintrudedKuroshio.

Allexperimentsareinitialized

fr

omtheresting

st

atewithidenticallateralboundarycondition

s.Each

experim

entincludes

a3

yearsp

in—up.follow

edb

y

5一

yearhindcastintegrat

ion.During

t

hesp

in—up,

t

he

modelis

forc

edb

y

theclimatolog

icalannualmeanforc—

ing

fields.Aft

ertha

t.themodelis

forcedb

y

t

hecli—

matolog

icalmonthl

ymeanforcing

fields.Thefo

rc.

ing

fieldshavebeendescribedindetailin

subction

2.1.F0r

eachrun.themodelisintegratedundertheir

respectiveconditions

asprescribedinTable

1.Each

model

yearconsistsof

360d

aysf30dayspermonth),

andday

1correspondsto1Janu

ary.

3.V_alidationofmodelresults

The

t

emporalevolutionof

thevolume—averagedki—

neticen

ergy

fKEloft

hecontrolrunindicates

thatthe

modelhas

reacheds

t

atisticalequilibrium

a

f

terthe3.

yearsp

in—up(fi

gures

notshown).TheKEalsoshows

clearasonalvariationsovertheh

indcastintegration.

Thesamefeatures

ofKEexistinthetwonsi

t

ivit

y

experim

ents.After

the5

year

shindca

stintegration.

themodelhasaquas

i—equilibriumas

onalcycle.The

last

year

sout

putsofall

theexperiments

arebelieved

tobereprentative

of

theclimatolog

icalasonalcir—

culat

ionintheSCS.whichwilIbeanal

yzedin

ction

4.

SinceExp

tE0aimstoreproducethereala—

sonalcirculation.modelvalidat

ionisonl

yperformed

forExp

t

E0.Thecomparisonsbetweent

hemodeled

asurfaceelevationfieldsandtho

obtain

ed

fr

om

theT/Paltimetry

data(averaged

from1993to2005)

areshowninFi

g.4.afterremoving

thedomain—

averagedvalueofea

chfield,IntheSCS,

thewinter—

timebasin..widecycloniccirculationand

t

hesummer..

t

imedi

polestructure

southeastofVietnam

aresimilar

inthem

odelresults

andtheobrvat

ions.Theinves—

t

i

gationofYangandLiu(2003)indicatedt

hatthere

are

westward—propagating

forcedRossb

ywavesinthe

northernSCS

wi

thapropagat

ion

speedofabout5am

s一0

.The

time—long

i

tudediagramofa

surfacehei

g

h

t

Table1.Desi

gnofthenum

ericalexperimen

ts.For

eachrun

t

hemodel

isintegrated

from

asta

teofrest

undert

heir

respectivecondi

t

ions

asprescribedbelow.Thelateralboundarycondit

ionsarekep

t

identical

inall

t

heexperim

ents.

维普资讯

828

SENSITIVITYSTUDY

ONCIRCULATIONINNORTHERN

SOUTHCHINA

SEA

100。E105。

E

110。E115。E120。E125。E

Fi

g.4.Themodeled(top)andobrv

ed(bottom)a

surfa

ceelev

ationfields(m)in

winter(1eft)andsummer(ri

g

ht).Theobrva

tions

whichare

obt

a

ined

fromtheT/P

altimetry

data

aret

he

a

sonalme

an

ofa

su

rfacehei

g

ht

fro

m1993to2005.The

domain—averagedvalu

eissubtractedfrom

ea

chfieldbeforethep

lotting.The

contour

int

ervalis0.05m.

anomal

y

intheno

rthernSCSfromExp

tE0(fi

gurenot

shownlhasa

similarpatterntot

hatof

YangandLiu

f2003).Anal

ysofQueta1.f2004)indicated

t

hatt

he

int

era

nnualvariat

ion

oftileLuzonS

traittransporthad

anoppositep

hacomparedwi

t

htheKuroshiotrans—

porteastofLuzon

whileKime

ta1.f20041show

ed

thatt

he

v

ari

ationoftheKuroshiot

ransportwashi

g

hl

y

correlatedwitht

heNorthE

quatorialCnrrentfNECl

bifurcationlatitude.There

for

e.reprodu

cing

t

heNEC

bifurcationlat

i

tudeisvery

important

forsimulating

theKuroshiointrusionat

theLuzonStrai

t.Inthe

prentstud

y.thedep

th—averagedNECbifllrca

tion

freprentedb

y

t

h

ezerocontourast

ofthePhili

p

p

inesinFi

g.4)occursatt

he

southernmostfnort

hern—

most1

posit

ioninsummerfwinterl,

withi

tsan

nu

alav。

erageat

about

13。Nnearthesurface.Thofeat

ures

areconsis

tentwith

t

heresult

sofQueta1.(2004)and

Kimeta1.f2004).

Ⅵ绝alsocomparetheannualmeanvolumetra

ns—

portsthroug

h

t

heTaiwanStrait

LuzonStrai

t

Kari—

VoL.25

ma

t

aStraitandthetran

sport

ofthewesternbound.

a

rycu

rrentof

theSCS,Kuroshio

e

ast

ofLuzonIs—

land

and

t

heMindanaoCurrentwit

h

previouss

t

ud.

iesfTable21.Generalagreements

existinterms

of

exchangesbet

weentheSCSandt

hesurroundingw

a

ters

andintermsof

t

hetransportoftheNort

hPacific

wes

t

ernboundarycurrents.F

orexamp

le

the

annual

meanvolumetransportt

hroug

htheLuzonStrai

tin

themodelis5.44Sv.whichiscomparable

with

t

here.

sultofMetzgerand

Hurlbu

rt(1996),Qu

eta1.(2000),

andFangeta1.f2005).Ac

t

uall

y,

es

timatedvolume

tran

sportthroug

htheLuzonStraitranges

fro

m810

Sv(e.g.,

Huangeta1.,

1994)to23Sv(W

yrtki

1961).

Recentl

y,

usingcurrenta

ndh

y

drograp

hicdata

Ti

an

eta1.f20061estimatedthevol

u

metransportt

hroug

h

theLuzonStraittobe63

resolut

ionobrva

tionsare

Sv.Morelong—termhi

g

h—

neededt

oobt

ainmoreac—

curatetran

sportt

hroug

h

theLuzonStrai

t.Thetrans—

port

est

ima

tedb

y

W

yrtki(1961)issm

allert

hanother

stud

ies

whichm

ay

bearesultofthefactthatthedata

维普资讯

No.5

HoNGANDⅥ,ANG

Table2.Climatolog

icalannu

almean

volumetra

nsport(Sv

1Sv=10。

m

(TWS),

LuzonStrait(LS),

KarimataStrai

t(KS),

t

hewes

ternbou

ndary

Mindan

a

o

current(MC).Thetranspor

tinthe

e

astward(westward)and

(negat

ive).Rfden

otesthereferencedep

t

hof

thed

ynamic

calculations.

829

s

-1)of

theflowsthroug

htheTaiwanStrait

current

ofSCS(WB),

Kuroshio(KU),

and

nor

thward(southward)direct

ionispositiv

e

theyudcamemainl

y

fromsurface

shi

p

dri

f

tandsur—

facewinddata.OortransportestimatesofKuroshio

andMindanaoCurrentarevervclototho

ofNi—

tanif19

72)andMetzgerandHurlburt(1996)butnot

as

consis

tentwi

t

htheKuroshiotran

sportobtainedb

y

Queta1.(1998).Suchadi

fierence

according

toToole

eta1.f19901,

stilllieswi

thinthereasonablerangeof

suchest

imates.

Tosu

mmarize,thecomparisonslendconfidence

tothesuccessoft

hemodelinreproducing

the

asonal

circulationint

heSCSandthesuccessof

t

heopen

boundaryconditionsinthisreg

ionaloceanm

odel.

4.An

al

ysis

4.1Seasonalcirc

ulationinthenorthe

rnSCS

Theresul

tsofthecontrolrunfExp

tE0)areudt

o

anal

yzetheaso

nalcirculationint

henorthernSCS.

Thevelocit

yat50一mdep

t

handa

surfaceelevation

fieldsare

showninFi

gs.5aand

6a.respectivel

y.In

winter

thecycloniccirculationisdominant,

wi

t

ha

strongslopecurren

tflowingsout

hwes

twardl

yalong

the

northwes

terncont

inentalslopeandamesoscalecy—

clonicedd

ynorthwestofLuzonIsland.Abranchof

theKuroshiointrudesintot

heSCS

fromthesouth—

ernpartoftheLuz

onStrai

tandisblockedb

y

the

cont

inen

talshelfnearDongshaIslands.Aft

erthecol—

lision

,partof

t

heintruded

Kuroshioveersnorthe

ast—

wardandexitst

heSCSt

hroug

h

t

heTaiwa

nStrai

t

andthe

northernpartoft

heLuzonStrait.whilethe

remainingpartcontinueswestwardalong

theconti.

nentalslope.The

northeastwardSCSWCisrelativel

y

weakerinwintert

hanint

heotherasons.Thereis

ahi

g

hasurface

elevationbel

tbetweentheSCSWC

andthe

slopecurrent.The

northeastwardasurfa

ce

slope

along

t

hesou

theastChinacoastisident

icalt

o

theobrvationsofFangandZhaof1989).Insum—

mer

t

hereisarelativel

yweakcyclonicgyreinthe

deeppar

tof

thenorthwesternSCS.Pohlmannf19871

suggestedthatt

hisgyrew

asinducedb

y

baroclinicef

fects.Thecurren

tsonthecontinentalshelfarestrong

andconsistentl

y

flown

ort

heastward.Thecon

tours

of

asurfaceelevat

ionon

theshelfarelargel

yparallel

withthecoastline

andthehi

g

hasurface

elevat

ion

beltdropsgraduall

yasitext

endswestwardalong

t

he

outered

geof

t

hecontin

entalshelf.S

pringandaut

umn

arethetransitionperiods

fo

rt

hereg

ion.TheSCSWC

is

streng

thenedinspringasthewindchangesfrom

northeas

terl

y

to

so

ut

hwes

terl

y.Thesimula

tedcircu.

1at

ionpatternagr

eesrat

herwellwi

t

h

the

schemat

ic

patternsofFangeta1.f19981forbothsummerand

winter.

Thevert

ical

profilesofthenorm

alveloci

t

yalong

theacross.shelftranct

inthenorthernSCSfshown

inFi

g.1b)areprentedinFi

g.7a.Thepositive(neg

ativelvaluecorrespondsto

thenor

theastward(south.

westwardlalong—shoreflow.The

as

onalvaria

tions

of

theflowareobviou

sin

the

upper400m

whilethe

alongs

lopeflowisrelative

l

ystableint

hedeeperlayer.

Intheinnershelfreg

ion.thecu

rrentsshowdirectre—

spons

tothemonsoonreversal.Thenort

heastward

SCSWCisnarrowl

yconfinedattheoutered

geofthe

cont

inentalshel

finwinter

andautumnandbecomes

widera

ndstrongerinspringandsu

mmer.Thereisa

year—roundnort

heastward

flowaround1400一mdep

th

who

m

aximumvelocit

y

is1arger

than0.1ms

1

Thisflowmay

berelat

edtothe

outflowoft

hewater

fr

omtheSCStot

heNort

hPacifict

hroug

ht

heLuzon

Strai

t

whichwasnotedb

yQueta1.(2000)andTian

et

a1.f20061.

Mored

ynamicinsi

g

htcanbe

obtainedb

yexam.

ining

thehorizontal

pressuregradientfields.Fi

gures

8a

and9apren

tthehorizontal

pressuregradient

at

50一mdep

thint

heeast—west(z)andnorth—south(Y)

directions

respec

tivel

y.Thehorizon

tal

pressu

regra

dientisdefinedas

O

p

=旦

Ox

ifzpg

dz

t

=p(呐g鼍+fzg篆耐

维普资讯

830SENSITIVITYSTUDY0NCIRCULATIONINNORTHERNSOUTHCHINASEA

Fi

g.5.SeaSonalmeanvelocit

y

fields(ms

一)at50一mdep

t

h

for(a)Exp

tE0(controlrun),(b)Exp

t

E1(withou

t

surfaceforcing),(c)diferencebetweenExp

ts

EOandE1(Exp

tEOminusExp

t

E1),

and(d)Exp

tE2(removing

thep

lateauarou

ndDongshaIsland).

维普资讯

N0.5

HoNGANDⅥ硝。NG

Fi

g.5.(Continued)

831

维普资讯

832

SENSITIVITYSTUDYONCIRCULATIONINN

ORTHERNSOUTH

CHINA

SEA

VOL.2

5

110~E114~E118~E122。E110~E114。E118~E122。E110~E114~E118~E122。E

110~E114~E1180E122~E

110。E114。E118~E122。E110~E114。E

118~E122。E110~E114。E118~E122。E110~E114~E118~E122~E

110~E114。E118。E122。E110~E114。E118~E122。E110~E114。E118~E122。E

110~E114~E118~E

122。E

110~E114。E118。E122。E110~E

114。E118~E122。E110~E114~E118~E122。E

110~E114~E118~E122。E

Fi

g.6.Seasonalmeanasurfaceeleva

tion(m)f

or(a)Exp

tE0

,(b)Exp

tE1

,(c)difere

ncebetweenExp

t

sE0andE1

(Exp

tE0minusExp

tE1),

and(d)E2

a

f

terremoving

theirdoma

i

n

averagedvalues.Thecontourint

erval

i

s0.05m.

where

th

epressuregradientsinxand

Y

directionsare

reprented

b

y

t

hesubscri

p

tsi=1and2.respect

ivel

y.

Intheequa

tion

,P

ispressure

,P

isdensit

y,9

isgravi

t

y,

and"istheasurfaceelevat

io

n.Itiswellknowntha

t

t

hereisnumericalerrorinthepressuregr

adientcalcu—

lat

i

onoveras

t

eep

t

opograp

h

y

inthe

terrainfollowing

oceanmodelfe.g.,Mellor

eta1.,1998).Thisnu

merical

errorcan

not

becomp

letel

yeliminated38longasthe

grid

does

no

tfollowgeopot

entialorisopycnal

surfaces.

In

orderto

redu

cethirrortoanaccep

tablelevel(be一

10wother

nu

m

ericalerrorslveralmethodshavebeen

sugges

ted(e.g.,

ChuandFa

n

2003

Mellore

t

a1.,

1994

Stellingandv

anKes

ter

19941.Among

the

t

hree

stepsare

adop

tedinou

r

calcula

tions.First.thebot—

tomtopograp

h

y

issli

g

htl

ysmoo

thedtorem

ov

esharp

topograp

hicvaria

tionsbe~restarting

then

umeri

cal

simulations.Second

thehorizontall

yaverageddensit

y

hasbeen

subtrac

t

ed

fromp

be

for

et

hecalculat

ions

andtheremainingpartisreprentedb

y

P

.Third

t

hegridischa

ngedfromasi

gmagridt

oaz—level

gridbeforecalcula

ting

thehorizon

t

al

pressuregradi—

ent.Thestepshavebeenproventobe

e

ficient

in

reducing

thepressu

regradient

error.The

w

estw

ard

(eastw

ard)pressuregrad

ientcorrespondstot

heposi—

tivefnegativelvalueinFi

g.8a

whilet

he

sout

hward

(northward)pressuregradientcorrespondstothepos—

itive(negat

ive)valueinFi

g.9a.AsFi

g.8a

show

s

the

westward

pressuregradientsoccupy

thenort

heastern

SCS

throug

houtt

heyearexcep

t

int

he

areasouth—

westofTaiwanIsland.Thee

astw

ard

pressu

regradi—

entsinthenorthwesternSCSshowobviou

sa

sonal

variations

whicharestrongerinwinteranda

u

tumn

thaninspringandsumm

er.Int

heLuzonStrait

the

wes

t

ward

pressuregradientsarerelativel

y

h

i

g

herini

ts

southernpartthanthat

initsnorthernpart.Theeast—

ward

pressuregradientso

ccupy

t

hereg

ion

southwest

维普资讯

N0.5

E

、,

o

o

Lat(oN)

HoNGAND、^,ANG

Fi

g.7.Verti

cal

profileoftheveloci

t

y(ms

_)normaltotheacross—shelf

tranct

int

henort

hernSCS

(showninFi

g.1b)for(a)Exp

tEO

,(b)Exp

t

E1

,(C)diferencebetweenExp

tE0andE1(Exp

t

E0minus

Exp

tE1),

and(d)E2.Thepositive(negative)valuecorrespondstot

henortheastward(southwestward)

flow.Thecounterintervalis0.05ms。

833

维普资讯

834

24。N

220N

20。N

180N

160N

24。N

220N

20口N

18

0N

16~N

240N

220N

20。N

180N

160N

240N

220N

20~N

180N

160N

a

SENSITIVITYSTUDYoNCIRCULATIoNINNORTHERNSoUTHCHINASEA

VOL.25

109。E1120E115。E118。E121。E124。E109。E1120E115。E118。E121。E124。E

109~E112。E115。E118。E121。E124。E109。E112~E115。E1侣。E121。E124。E

b

109。E112~E115。E118。E121。E124。E1

09。E"20E115。E118。E121。E124。E

109。E1120E115。E118

E121

。E124

。E109。E112。E1150E118。E121。E124。E

C

109。E1120E115~E118。E121。E124。E109。E112。E115。E1180E121。E124。E

109。E1120E115。E118。E121。E124。E109。E1120E115。E118。E121。E124。E

d

109~E112~E115~E1180E121。E124。E109。E112。E115~E1t8。E121。E124。E

109~E112

~

E115。E”8。E121

。E124。E109~E112。E115。E118。E121

。E124。E

.柏.30—20t0010

203040

Fi

g.8.Fieldsofhorizontal

pressu

regradients(k

gm

1

s

q)intheea

st—west

directionat50一mdep

t

h

for(a)Exp

tE0

fb)Exp

tE1

,fc)diferencebe

tweenExp

tE0andE1(Exp

tE0minusExp

tE1),

and(d)Exp

t

E2.Theboldlinesare

zerocontours

andt

hedashed(solid)linesreprentnegat

ive(positive)values.Thecontourintervalis4×10“k

gm

s.

ofTaiwanIslandall

yearround.whichmay

beregu—

latedb

y

thetopograp

h

yandintrudedKuroshiowa

ter.

InFi

g.9a.thesouthwa

rd

pressuregradient

isdomi—

nantalongazonalbel

tt

hatislargel

yalong

thecont

i—

nentalslopesou

thwestofDongshaIslands

whereas

thenort

hward

pressuregradientoccup

iest

heouter

ed

geoft

hecontinentalshelfwithclear

as

onalvaria

t

ions.Themeridional

pressuregradientsareopposi

te

inthesout

hernandnorthernpartsoftheLuzonStrait

whichcorrespondstot

heexcursionsofKuroshiointhe

straj

t.

4.2Efects

oflateralfo

rcing

Thelateralforcing

throug

hthestrai

ts

especiall

y

thothroug

ht

heLuzonStraitandTaiwanStrait

has

animportantefectonthecirculationint

henorthern

SCS.Forthepurpoof

quali

f

y

ing

thee

fects

weu

thensi

t

ivit

y

Exp

tE1wi

t

h

t

heforcingonl

yatt

helat—

eralopenboundary.Thevelocit

yat50.mdep

t

hand

asurfaceelevationfieldsareshowninFi

gs.5

band

6b

respect

ivel

y.I

t

isshownt

hatwithoutthesurface

forcing,thecirculat

ionsouthof18。Nisveryweak

and

t

heLCEdisappears.ThereisabranchoftheKuroshio

thatintrudesinto

theSCSand

flowswestwardalong

thecont

inentalslopeall

yearround.Astead

ycur—

rentflowsnort

heastwardalong

theout

ered

geof

t

he

continentalshelf,

whichcomparesfavorabl

ywiththe

obrvedSCSWC.Thevert

ical

profilesof

t

henormal

velocit

yalong

t

heacross—shelftranctfFi

g.7b)indi—

ca

tes

thattheSCSWChasanobviousbarotrop

ic

fea

ture.Ahi

g

hasurfaceelevat

ionbeltexistsbetween

t

heslopecurrentandtheSCSWC.

whichdecreas

维普资讯

No.5HONGAND

Ⅵ,ANG

fromeasttowest.Thereareonshoreflowsbetween

t

heslopecurrentandtheSCSWC,

whichsuggeststhat

theslopecurrentmi

g

h

t

feedtheSCSWCt

hroug

h

t

he

onshoreflow.Thisnsitivi

t

yrunrevealsthatthehi

g

h

asurfaceelevat

ionbeltalong

thecont

inentalshelf

breakm吖beinducedb

y

theKuroshiointrusion

throug

htheLuzonStraitand

t

heoutflowthroug

h

t

he

TaiwanStraitforlateralforcing

throug

htheLuzon

andTaiwanStrai

t),

andthegenerationoftheSCSWC

isclol

yrelatedwi

t

h

t

heSCSBKthroug

htheimpod

pressureheadandtheonshoreflowinthecont

inen—

talshelfbreakreg

ion.TheannualmeanLuzonStrait

transportinExp

t

E1

is5.4Sv.whichisverycloto

thatint

hecontrolrun(Table2).Thisindicatest

hat

al

t

houg

hthewindforcing

hascontribu

tiontothea

sonalvariation

of

theLuzonStraittransport.ithas

littleefectontheannualmeanLuzonStrai

ttrans—

port.Thisisconsistentwi

t

h

thefindingofMetzger

andHurlburtf1996).ThetransportsintheTaiwan

Strait

MindoroStrai

t

andKarimandaStraitare1.46.

2.98,

and

0.78Sv

respectivel

y.Theinflowandoutflow

throug

hallthestrai

tsarenearl

y

balanced.From

am

assbalancepoint

ofview

.t

hemeanLu—

zonStraittransportisactuall

yawestwardextension

ofthenortherntrop

ical

gyreintheWestPacificr

Met—

zgerandHurlburt

1996).AsFi

g.8bshows

thepres—

suregradientfieldsintheLuzonStrait

calculated

frpin

Exp

tE1havesimilarpatternswi

t

h

thofr

omExp

t

E0.Thewestward

pressuregr

adient

occup

iesmostof

thenorthernSCS.Fi

gure9brevealsthatt

hesouth—

ward

pressuregradientisrelat

ivel

ystrongerinthe

northeastSCSthanthatinthenort

hwestSCS.which

correspondstothegradualweakeningof

t

hewestward

flowasi

treachest

heinterioroftheSCS.Thenorth—

ward

pressuregradientxistconsistent

l

yonthecon—

tinentalshelfandarequitestablea11

yearround.

4.3Efects

ofwindfo

rcing

Wedemonstratetheefect

ofwindforcingonthe

circulationb

yshowing

thedi

fieren

cebetweenExp

ts

E0andE1.Thediferencesofthevelocit

yat50..m

dep

thandasurfaceelevationfieldsareprentedin

Fi

gs.5cand

6c

respectivel

y.Itisshownthat

ex—

cep

ttothewestoftheLuzonstraitandthecontinen

talshelfbreakreg

ion

thecirculationsinthenorthern

SCSshowsimilarpatternstot

hoinFi

gs.5aand

6a.In

wint

er

thecyclonicgyreoccup

iesthewholebasin

andtheLCEexistswest

of

Luzon.TheEkmandri

f

t—

inducedwaterp

ilesupalong

thecoast.whichcreat

es

thea

cross—shelfasurfaceslopenearthecoast.The

currentsintheshallowwaterflowconsistentl

ysouth—

westward.ThesouthwestwardSCSwesternbound—

arycurrentismaintainedin

springandautumn

with

mesoscaleeddiesappearing

inthedeepa.The

835

features

are

mainl

y

theresul

tofwind

forcing.Ithas

beenshowninpreviousst

udiesfe.g.,

Su

2004)that

summermonsoonfo

rcesthecurrentsinthenort

hern

SCScontinentalshelftoflownortheastward.However.

itcanbenotedinFi

g.5ct

hattherearealmostno

leewardfnort

heastwardlcurrent

sont

heshelfinsum—

mer.Thevertical

profilesofthenormalvelocit

yalong

theacross—shelftranct

inthenorthernSCSalsore—

vealthatt

hesimulatedwind—inducedalongshelfflow

isveryweakinsummer.Thereasoncanbe

exp

lained

asfollows.AsExp

tE1shows.theKuroshiointrusion

caninduceahi

g

hasurfaceelevationbelt

andthe

relatednortheastwardcurrentint

hecontinentalshelf

(Fi

gs.5band

6b).MetzgerandHurlburt(1996)sug

gestedthatt

hepressureheadcreatedb

y

thep

ileupof

waterfr

omthesouthwestmonsoonwouldreducethe

LuzonStraittransport.Wi

t

houtwindforcing.theLu—

zonStraittransportfwhichiswestwardlsimulatedin

Exp

tE1ixaggeratedinsummer.thus.theintruded

Kuroshioisstrongerthant

hatinExp

tE0.There—

fore

thecirculationinthenorthernSCScontinental

shel

f/slopesimulatedinExp

tE1issomewhat

over—

est

imatedinsummer.Asaresult.thewind—induced

circulat

ionob

tained

fr

omthediferencebetweenExp

ts

E0andEl

isunderestimatedinsummerfFi

gs.5cand

6c).Thevertical

profilesofthealongshelfveloci

t

y

in

theacross—shelftranctfshowninFi

g.1b1indicate

thattheSCSWCtotall

y

disappearsinthixperiment

(Fi

g.7c).

Thewind—inducedhorizontal

pressuregradient

fieldsat50一mdep

t

hareshowninFi

gs.8cand9c.

whichareintheeast.westandnorth.sout

hdirections.

respect

ivel

y.Itisshownthattherearetwohi

g

hwest—

ward

pressuregradientreg

ionsint

henorthernSCS:

oneoccurswest

of

t

heLuzonIsland,t

heotherlies

southwestofTaiwanIslandfFi

g.8c).Theeastward

pressuregradientsalong

thenorthwesternboundaryof

thebasinshowsimilarpatternsasthoinFi

g.8a

and

have

obviousasonalvariat

ions.Suchvariations

are

consistentwith

t

hetransi

t

ionofthem

onsoon.The

pressuregradientsinthenort

h—southdirect

ionfFi

g.

9c)showvery

di

fierent

featuresthant

hointhe

ot

her

experiments.Thereisnozonalbel

tofsout

hwardhi

g

h

pressuregradientwestoftheLuzonStrai

t.Instead

t

hereare

southwardhi

g

h

pressuregradientsalong

the

northwesternboundaryofthebasin

whichistheresult

of

thewat

erp

ileupalong

thenorthwesternboundary

inducedb

y

thewind.Thereisnonorthward

pressure

gradientonthenorthernSCScont

inentalshelf.

4.4Efects

ofbottomtopograp

h

y

Severalstudiessuggestedthatt

heintruded

Kuroshiowasdeflect

edb

y

thecontinentals10penear

DongshaIslands(e.g.,

zhong,

1990

Hsuehandzhong,

维普资讯

836

24~N

220N

200N

18~N

16~N

240N

220N

20~N

180N

16口N

24~N

22~N

20~

N

18~N

f60N

24~N

22~N

200N

1BoN

160N

a

SENSITIVITYSTUDYONCI

RCULATIONINNORT

HERN

SOUTHCH

INA

SEA

b

109。E1120E115。E118。E121

E124。E

109

~E112~E”soE118~E121

~E1240E

C

10

9。E1120E1150E118口

E

121

。E

124~Et09。E1120E

d

109~E1120E115。E11Ba

E121。E

124。Et09~E

1120E'15~E118~E

4030

本文发布于:2022-11-27 15:44:39,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/31848.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:devote
标签:south china
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图