Amulti-criteriainterval-valuedintuitionisticfuzzygroupdecisionmaking
withChoquetintegral-badTOPSIS
ChunqiaoTan
SchoolofBusiness,CentralSouthUniversity,Changsha410083,China
articleinfo
Keywords:
Multi-criteriagroupdecisionmaking
Interval-valuedintuitionisticfuzzyts
Fuzzymeasures
Geometricaggregationoperator
Choquetintegral
TOPSIS
abstract
AnextensionofTOPSIS,amulti-criteriainterval-valuedintuitionisticfuzzydecisionmakingtechnique,to
agroupdecisionenvironmentisinvestigated,whereinter-dependentorinteractivecharacteristics
broadviewofthetech-
niquesud,first,someoperationallawsoninterval-valuedintuitionisticfuzzyvaluesareintroduced.
Badontheoperationallaws,ageneralizedinterval-valuedintuitionisticfuzzygeometricaggregation
operatorispropodwhichisudtoaggregatedecisionmakers’opinionsingroupdecisionmakingpro-
tion,oquetintegral-badHammingdistance
betweeninterval-valuedintuitionisticfuzzyvaluesisdefiingtheinterval-valuedintuitionis-
ticfuzzygeometricaggregationoperatorwithChoquetintegral-badHammingdistance,anextensionof
TOPSISmethodisdevelopedtodealwithamulti-criteriainterval-valuedintuitionisticfuzzygroupdeci-
y,anillustrativeexampleisudtoillustratethedevelopedprocedures.
Óhtsrerved.
uction
TOPSIS(TechniqueforOrderPreferencebySimilaritytoIdeal
Solution),developedbyHwangandYoon(1981),isaclassicalap-
proachtomulti-attributeormulti-criteriadecisionmaking
(MADM/MCDM)racticalandufultechnique
forrankingandlectionofanumberofexternallydetermined
icprincipleisthat
thechonalternativeshouldhavetheshortestdistancefromthe
positive-idealsolutionandthefarthestdistancefromthenegative-
xistsalargeamountofliteratureinvolving
OPSIS,theperformance
ratingsandtheweightsofthecriteriaaregivenascrispvalues.
Undermanyconditions,crispvaluesareinadequatetomodel
real-worldsituationsbecauhumanjudgmentandpreference
areoftenambiguousandcannotbeestimatedwithexactnumeri-
lvetheambiguityfrequentlyarisingininforma-
tionfromhumanjudgmentandpreference,fuzzyttheory
(Zadeh,1965)hasbeensuccessfullyudtohandleimprecision
(oruncertainty)uzzynumbers
wereappliedtoestablishaprototypefuzzyTOPSIS(Chen&Hwang,
1992;Negi,1989),manyworksonfuzzyTOPSIShavebeeninves-
tigated(Chen,2000;Chu&Lin,2009;Jahanshahloo,Hosinzadeh
Lotfi,&Izadikhah,2006;Kuo,Tzeng,&Huang,2007;Mahdavi,
Mahdavi-Amiri,Heidarzade,&Nourifar,2008;Wang&Chang,
2007;Wang&Elhag,2006;Wang&Lee,2007,2009;Yeh&Deng,
2004;Yeh,Deng,&Chang,2000).AsanextensionofZadeh’s
fuzzytwhobasiccomponentisonlyamembershipfunction,
Atanassov(1986)introducedtheintuitionisticfuzzyts(IFS),
characterizedbyamembershipfunctionandanon-membership
function,Accordingly,IFShasbeenproventobeaverysuitabletool
tobeudtodescribetheimprecioruncertaindecisioninforma-
workhasbeendonetodevelopandenrichtheIFS
theory(Atanassov,1999;Bustince,Herrera,&Montero,2007).As
ageneralizationofthefuzzyts,IFShasreceivedmoreandmore
attentionandhasbeenappliedtothefi
fuzzyTOPSIShasbeenextendedtoIFS(Ashtiani,Haghighirad,
Makui,&Montazer,2009;Boran,Gen,Kurt,&Akay,2009;Chen
&Tsao,2008;Li,Wang,Liu,&Shan,2008).Later,Atanassovand
Gargov(1989)introducedtheconceptofinterval-valuedintuition-
isticfuzzyts(IVIFS)
fundamentalcharacteristicoftheIVIFSisthatthevaluesofits
membershipfunctionandnon-membershipfunctionareintervals
sov(1994)definedsomeopera-
ly,TanandZhang(2006)prented
anovelmethodformultipleattributedecisionmakingbadon
(2007)
developedsomegeometricaggregationoperators,suchasthe
interval-valuedintuitionisticfuzzyweightedgeometricaveraging
(IIFWGA)operatorandtheinterval-valuedintuitionisticfuzzyor-
deredweightedgeometricaveraging(IIFOWGA)operatorandgave
anapplicationoftheIIFWGAandIIFOWGAoperatorstomultiple
attributegroupdecisionmakingwithinterval-valuedintuitionistic
(2009)appliedIIFWGAaggregationfunc-
tionstodealingwithdynamicmultipleattributedecisionmaking
0957-4174/$-efrontmatterÓhtsrerved.
doi:10.1016/.2010.08.092
E-mailaddress:chunqiaot@
ExpertSystemswithApplications38(2011)3023–3033
ContentslistsavailableatScienceDirect
ExpertSystemswithApplications
journalhomepage:/locate/eswa
wherealltheattributevaluesareexpresdinintuitionisticfuzzy
numbersorinterval-valuedintuitionisticfuzzynumbers.
However,theaggregationprocessarebadontheassump-
tionthatthecriteria(attribute)orpreferencesofdecisionmakers
areindependent,andtheaggregationoperatorsarelinearopera-
torsbadonadditivemeasures,whichischaracterizedbyan
independenceaxiom(Keeney&Raiffa,1976;Wakker,1999).For
realdecisionmakingproblems,thereisaphenomenonthatthere
existssomedegreeofinter-dependentorinteractivecharacteris-
ticsbetweencriteria(Grabisch,1995;Grabisch,Murofushi,&
Sugeno,2000).Andforadecisionproblem,decisionmakersinvited
usuallycomefromsameorsimilarfivesimilarknowl-
edge,onmakers’subjective
ndencephenomena
amongthecriteriaandmutualpreferentialindependenceof
1974,Sugeno(1974)introduced
theconceptofnon-additivemeasure(fuzzymeasure),whichonly
ost
effectivetooltomodelinginteractionphenomena(Grabisch,
1996;Ishii&Sugeno,1985;Kojadinovic,2002;Roubens,1996)
anddealwithdecisionproblems(Grabisch,1995,1997;Grabisch
etal.,2000;Onisawa,Sugeno,Nishiwaki,Kawai,&Harima,
1986).Areviewonanalyzingdecisionmakerbehaviorusingfuzzy
measuretheorycanbeeninLiginlalandOw(2006).Ingroup
decisionmakingproblems,aggregationofdecisionmakers’opin-
ionsisveryimportanttoappropriatelyperformevaluationprocess.
Toovercomethislimitationofaboveaggregationoperator,inthis
paper,badonfuzzymeasurewefirstshalldevelopageneralized
interval-valuedintuitionisticfuzzygeometricaggregationoperator
foraggregatingallindividualdecisionmakers’opinionsunder
interval-valuedintuitionisticfuzzygroupdecisionmakingenvi-
ingthisoperatorwithTOPSISonChoquetinte-
gral-badHammingdistance,amulti-criteriainterval-valued
intuitionisticfuzzygroupdecisionmakingisinvestigated,where
interactionsphenomenaamongthedecisionmakingproblemare
considered.
Inordertodothis,thepaperisorganizedasfollows:InSection
2,ion3,weintroduceinterval-
valuedintuitionisticfuzzytandsomeoperationallawsoninter-
val-valuedintuitionisticfuzzyvalues,InSection4,badonthe
operationallaws,ageneralizedinterval-valuedintuitionisticfuzzy
geometricaggregationoperatorispropod,andsomeofitsprop-
ion5,accordingtodefinitionof
Choquetintegral,weinvokethewell-knownHammingdistance
todefinetheChoquetintegral-badHammingdistancebetween
ingthe
generalizedinterval-valuedintuitionisticfuzzygeometricaggrega-
tionoperatorwithChoquetintegral-badHammingdistance,an
extensionofTOPSISisdevelopedtodealwithamulti-criteriainter-
val-valuedintuitionisticfuzzygroupdecisionmakingproblems
whereinter-dependentorinteractivecharacteristicsamongcrite-
Section6,anexampleisgiventoillustratetheconcreteapplication
ofthemethodandtodemonstrateitsfeasibilityandpracticality.
ConclusionsaremadeinSection7.
easure
Fortraditionaladditiveaggregationoperators,suchasthe
weightedarithmeticmeanorOWA(Yager,1988)operator,each
criteriai2N(Ndenotesacriteriat)isgivenaweightw
i
2[0,1]
reprentingtheimportanceofthiscriteriaduringthedecision
process,andthesunofallw
i
(i=1,2,...,n)
doesnotdefi
decisionproblems,sincethereareofteninter-dependentor
interactivephenomenaamongcriteria,theoverallimportanceofa
criterioni2Nisnotsolelydeterminedbyitlfi,butalsobyallother
criteriaT,ethatw(i)denotestheimportancedegreeof
i,wemayhavew(i)=0,suggestingthatelementisunimportant,
butitmayhappenthatformanysubtsT#N,w(T[i)ismuch
greaterthanw(T),suggestingthatiisactuallyanimportantele-
1974,Sugeno(1974)introducedthecon-
ceptoffuzzymeasure(non-additivemeasure),whichonlymake
ldecision
makingproblems,fuzzymeasuredefineaweightonnotonlyeach
criteriabutalsoeachcombinationofcriteria,andthesunofevery
w
i
(i=1,2,...,n)isudasapowerful
toolfordescribingtheinteractionamongthecriteriainat.
Defi={x
1
,x
2
,...,x
n
}beauniverofdiscour,P(X)
measureonXisatfunction
l:P(X)?[0,1],satisfyingthefollowingconditions:
(1)l(/)=0,l(X)=1.
(2)IfA,B2P(X)andA#Bthenl(A)6l(B).
IftheuniversaltXisinfinite,itisnecessarytoaddanextra
axiomofcontinuity(Wang&Klir,1992).However,inactualprac-
tice,itinoughtoconsiderthefiniteuniversalt.l(S)canbe
viewedasthegradeofsubjectiveimportanceofdecisioncriteria
,inadditiontotheusualweightsoncriteriatakenp-
arately,weightsonanycombinationofcriteriaarealsodefined.
Thismakespossiblethereprentationofinteractionbetweencri-
j
={x
j
,x
j+1
,...,x
n
}(16j6n)erac-
tionamongthecriteriainE
j
canbedescribedbyemployingl(E
j
)to
expressthedegreeofimportanceofE
j
.Thatis,thedegreeofimpor-
tanceofE
j
ivaluatedbysimultaneouslyconsideringx
j
,x
j+1
,...,
andx
n
.Hence,lcanbecalledanimportancemeasure(Wang,
Wang,&Klir,1998),andl(E
j
)canbealsoemployedtoexpress
thediscriminatorypowerofE
j
.Intuitively,wecouldsaythefollow-
ingaboutanyapairofcriteriatsA,B2P(X),AB=/:AandBare
consideredtobewithoutinteraction(ortobeindependent)if
l(A[B)=l(A)+l(B),
Bexhibitapositivesynergeticinteractionbetweenthem(orare
complementary)ifl(A[B)>l(A)+l(B),whichiscalledasuper-
xhibitanegativesynergeticinteraction
betweenthem(orareredundantorsubstitutive)if
l(A[B)
Inordertodeterminesuchfuzzymeasure,wegenerallyneedto
find2nÀ2valuesforncriteria,onlyvaluesl(/)andl(X)areal-
wayqualto0and1,valuationmodelob-
tainedbecomesquitecomplex,andthestructureisdifficultto
dtheproblemswithcomputationalcomplexityand
practicalestimations,k-fuzzymeasureg,aspecialkindoffuzzy
measure,waspropodbySugeno(1974),whichsatisfiesthefol-
lowingadditionalproperty:
gðA[BÞ¼gðAÞþgðBÞþkgðAÞgðBÞ;ð1Þ
wherek>À1forallA,B2P(X)andAB=/.However,thereare
-
stance,linearmethods(Marichal&Roubens,1998),quadratic
methods(Grabisch,1996;Grabisch&Nicolas,1994),heuristic-
badmethods(Grabisch,1995)andgeneticalgorithms(Wang
etal.,1998)areavailableintheliterature.
InEq.(1),k=0indicatesthatthek-fuzzymeasuregisadditive
measure.k–0indicatesthatthek-fuzzymeasuregisnon-additive
>0,then
g(A[B)>g(A)+g(B),whichimpliesthatgisasuper-additivemea-
<0,theng(A[B)
meterktheinteractionbetweencri-
teriacanbereprented.
/ExpertSystemswithApplications38(2011)3023–3033
IfXisafinitet,then[n
i¼1
x
i
¼-fuzzymeasuregsatis-
fiesfollowingEq.(2)
gðXÞ¼gð[
n
i¼1
x
i
Þ¼
1
k
Qn
i¼1
½1þkgðx
i
Þ
本文发布于:2022-11-27 14:00:11,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/31409.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |