combustion

更新时间:2022-11-25 16:05:25 阅读: 评论:0


2022年11月25日发(作者:wepad)

Combustioncharacteristicsofdifferentbiomassfuels

AyhanDemirbas

*

DepartmentofChemicalEngineering,SelcukUniversity,Konya,Turkey

Received15March2003;accepted31October2003

Abstract

Biomasnergyisoneofhumanity’arliestsourcesofenergyparticularlyinruralareaswhereitisoftentheonlyaccessible

idebiomassranksfourthasanenergyresource,providingapproximately14%ofthe

world’nergyneedsallhumanandindustrialprocessproducewastes,thatis,normallyunudandundesirableproductsofa

specifitionandrecoveryofsolidwastesvariesdramaticallyfromcountrytocountryanddervesspecial

ningveloofbiomassfuels

providessubstantialbenefisabsorbscarbondioxideduringgrowth,andemits

ationofbiomassasfuelforpowerproductionofferstheadvantageofarenewableandCO

2

-neutral

ghthestructural,proximateandultimateanalysresultsofbiomassandwastesdifferconsiderably,some

propertiesofthebiomasssamplessuchasthehydrogencontent,thesulfurcontentandtheignitiontemperatureschangedina

narrowinterval.

htsrerved.

Keywords:Biomass;Combustion;Fuelproperties;Cofiring

Contents

uction...................................................................220

ssources............................................................220

tbiomassconversiontechnologies.........................................220

astes...................................................................220

ficationofbiomass...........................................................221

eformingofbiomass...................................................221

ficationsystems.........................................................222

sisofbiomass.............................................................222

opertiesofbiomass........................................................222

tionpropertiesofbiomass...................................................224

mistryofbiomasscombustion............................................225

mbustionpropertiesoflectedbiomasssamples.............................225

ationofhigherheatingvalue..............................................226

firingofbiomassandcoalblends.................................................227

-pyrolysis..............................................................227

ismofbiomasscofiringwithcoal.........................................228

sion....................................................................228

References.......................................................................229

0360-1285/$-htsrerved.

doi:10.1016/.2003.10.004

ProgressinEnergyandCombustionScience30(2004)219–230

/locate/pecs

*

.:þ90-462-230-7831;fax:þ90-462-

248-8508.

E-mailaddress:ayhandemirbas@(as).

uction

Biomasscanbeconvertedintoliquid,solidandgaous

fuelswiththehelpofsomephysical,chemicaland

biologicalconversionprocess[1,2].Theconversionof

biomassmaterialshasapreciobjectivetotransforma

carbonaceoussolidmaterialwhichisoriginallydifficultto

handle,bulkyandoflowenergyconcentration,intothefuels

havingphysico–chemicalcharacteristicswhichpermit

economicstorageandtransferabilitythroughpumping

systems.

Worldwidebiomassranksfourthasanenergyresource,

providingapproximately14%oftheworld’nergyneeds;

biomassisthemostimportantsourceofenergyin

developingnations,providing;235%oftheirenergy[3,4].

Theuofbiomassfuelsprovidessubstantialbenefitsas

sabsorbs

carbondioxideduringgrowth,andemitsitduringcombus-

ore,biomasshelpstheatmosphericcarbon

dioxiderecyclinganddoesnotcontributetothegreenhou

sconsumesthesameamountofCO

2

fromthe

atmosphereduringgrowthasisreleadduringcombustion.

ssources

Biomassfuelspotentialincludeswood,short-rotation

woodycrops,agriculturalwastes,short-rotationherbaceous

species,woodwastes,bagas,industrialresidues,waste

paper,municipalsolidwaste,sawdust,bio-solids,grass,

wastefromfoodprocessing,aquaticplantsandalgaeanimal

wastes,wastesare

anothersignificantpotentialbiomassresourceforelectricity

generation,andlikecropresidues,havemanyapplications,

sisonlyorganic

petroleumsubstitutewhichisrenewable.

Biomassoffersimportantadvantagesasacombustion

feedstockduetothehighvolatilityofthefuelandthehigh

r,it

shouldbenoticedthatincomparisonwithsolidfossilfuels,

biomasscontainsmuchlesscarbonandmoreoxygenand

hasalowheatingvalue.

Theburningvelocityofpulverizedbiomassfuelsis

verized

biomassfuelscanbeburnedinaflameinthesamewayas

oilorgasfuelsandatthesamehighpoweroutput[5].

tbiomassconversiontechnologies

Directcombustionistheoldwayofusingbiomass.

Biomassthermo-chemicalconversiontechnologiessuchas

pyrolysisandgasificationarecertainlynotthemost

importantoptionsatprent;combustionisresponsiblefor

over97%oftheworld’sbio-energyproduction.

Someprocesssuchaspyrolysis,gasification,

anaerobicdigestionandalcoholproductionhavewidely

beenappliedtobiomassinordertoobtainitnergy

scanbedirectlyfiredindedicated

r,cofiringbiomassandcoalhastechni-

cal,economical,andenvironmentaladvantagesoverthe

firingbiomasswithcoal,incomparison

withsinglecoalfiring,helpsreducethetotalemissions

estofallfuels,wood

(orbiomass),andtheoldoriginalfueloftheindustrial

revolution,coal,arekeytothismovetoanewmission.

Technicalissuesthatcanleadtodoubtaboutofbiomass

cofiringwithcoalarebeingresolvedthroughtestingand

experience[6].

Maincurrentbiomasstechnologiesare[7]:

ctivecarbonizationofwoodybiomassto

charcoal

ficationofbiomasstogaousproducts

sisofbiomassandsolidwastestoliquid,solid

andgaousproducts

riticalfluidextractionsofbiomasstoliquid

products

actionofbiomasstoliquidproducts

ysisofbiomasstosugarsandethanol

bicdigestionofbiomasstogaousproducts

spowerforgeneratingelectricitybydirect

combustionorgasificationand

sis

firingofbiomasswithcoal

icalconversionofbiomassandwaste(biogas

production,wastewatertreatment)

sdensification(briquetting,pelleting)

iccookstovesandheatingappliancesof

fuelwood

nergyconrvationinhouholdsand

industry

hotovoltaicandbiomassbadrural

electrification

sionofbiomasstoapyrolyticoil(biofuel)for

vehiclefuel

sionofbiomasstomethanolandethanolfor

internalcombustionengines

Inearlierwork[8],groundbiomasssampleshavebeen

convertedcompletelyintowaterinsolubleandsoluble

chemicalsintheprenceofanhydrousglycerinwithalkali

suchasNa

2

CO

3

tonesolublesfrom

acidificationoftheliquefactionproductswascalledbiofuel

ubilityofthebiofuelingasolinewas

testedas1.96%herwork[9],theacetone

solublesofthepyrolysisproductsfromthebiomasssamples

wereaddedtogasoline.

astes

Thewasteproductsofahomeincludepaper,containers,

tincans,aluminiumcans,andfoodscraps,aswellaswage.

as/ProgressinEnergyandCombustionScience30(2004)219–230220

Thewasteproductsofindustryandcommerceinclude

paper,wood,andmetalscraps,aswellasagriculturalwaste

products[10,11].Biodegradablewastes,suchaspaperfines

andindustrialbiosludge,intomixedalcoholfuels(e.g.

isopropanol,isobutanol,isopentanol).Thewastesarefirst

treatedwithlimetoenhancereactivity;thentheyare

convertedtovolatilefattyacids(VFAs)suchasaceticacid,

propionicacid,andbutyricacid—usingamixedcultureof

microorganismsderivedfromcattlerumenoranaerobic

dpaperwastesmayalso

tentsofdomestic

solidwastearegiveninTable1.

Therearefourmajormethodsforconversionoforganic

wastestosyntheticfuels:(1)hydrogenation;(2)pyrolysis;

(3)gasification:and(4)bioconversion[12].Thefirstthree

havebeenadvancedtothepilot-plantstage,whilethefourth

hasbeenthesubjectofonlyminorrearcheffort,butisa

lsolidwastesincludewood

material,pulpandpaperindustryresidues,agricultural

residues,organicmunicipalmaterial,wage,manure,and

sisconsideredoneof

themainrenewableenergyresourcesofthefutureduetoits

largepotential,economicviabilityandvarioussocialand

environmentalbenefistimatedthatby2050

biomasscouldprovidenearly38%oftheworld’sdirectfuel

uand17%oftheworld’lectricity[13].Ifbiomassis

producedmoreefficientlyandudwithmodernconversion

technologies,itcansupplyaconsiderablerangeand

pal

solidwaste(MSW)isdefinedaswastedurablegoods,

nondurablegoods,containersandpackaging,foodscraps,

yardtrimmings,andmiscellaneousinorganicwastesfrom

residential,commercial,andindustrialsources.

Generationreferstotheamountofmaterialthatenters

thewastestreambeforerecovery,composting,orcombus-

ryreferstomaterialsremovedfromthewaste

streamforthepurpoofrecyclingand/orcomposting.

Table2showsthegenerationandrecoveryofMSWinthe

rgycontentofMSWintheUSis

typicallyfrom10.5to11.5MJ/erationand

recoveryofMSWvariesdramaticallyfromcountryto

mple,recent

estimatesindicateMSWgenerationintheUKofabout30

milliontonsofwhich90%islandfiarison,

Swedenlandfilledonly34%oftheirMSWgeneration[14].

ficationofbiomass

Gasificationisaformofpyrolysis,carriedoutathigh

resultinggas,knownasproducergas,isamixtureofcarbon

monoxide,hydrogenandmethane,togetherwithcarbon

dioxideandnitrogen.

Biomassgasificationtechnologieshavehistoricallybeen

baduponpartialoxidationorpartialcombustionprin-

ciples,resultingintheproductionofahot,dirty,low

calorificvaluegasthatmustbedirectlyductedintoboilers

tiontolimitingapplicationsandoften

compoundingenvironmentalproblems,thetechnologies

areaninefficientsourceofusableenergy.

Biomassgasificationisthelatestgenerationofbiomass

energyconversionprocess,andisbeingudtoimprove

theefficiency,andtoreducetheinvestmentcostsofbiomass

electricitygenerationthroughtheugasturbinetechnol-

ficiencies(uptoabout50%)areachievable

usingcombined-cyclegasturbinesystems,wherewaste

gasfromthegasturbinearerecoveredtoproducesteam

icstudiesshowthat

biomasssuffocationplantscanbeaconomicalas

conventionalcoal-firedplants.

eformingofbiomass

Mostbiomassgasificationsystemsutilizeairoroxygen

inpartialoxidationorcombustionprocessThepro-

cesssufferfromlowthermalefficienciesandlowcalorific

Table1

Contentsofdomesticsolidwaste(Percentageoftotal)

ComponentLowerlimitUpperlimit

Paperwaste33.250.7

Foodwaste18.321.2

Plasticmatter7.811.2

Metal7.310.5

Glass8.610.2

Textile2.02.8

Wood1.82.9

Leatherandrubber0.61.0

Miscellaneous1.21.8

Source:Ref.[48].

Table2

GenerationandrecoveryofMSWintheUS,1993(milliontons)

MaterialGenerationRecoveredDiscardedProjected

generated

2000

Paper70.524.046.681.0

Glass12.42.79.712.7

Metals15.54.710.817.2

Plastics17.50.616.920.4

Rubber/leather5.60.45.46.9

Textiles5.50.64.95.6

Wood12.41.211.214.5

Food12.5012.512.7

Yardtrimmings29.85.923.920.1

c2.802.83.0

Others3.00.62.43.2

Total187.540.7147.1197.3

Source:Ref.[49].

as/ProgressinEnergyandCombustionScience30(2004)219–230221

gasbecauoftheenergyrequiredtoevaporatethemoisture

typicallyinherentinthebiomassandtheoxidationofa

portionofthefeedstocktoproducethinergy.

Theprossofsynfuelsfrombiomasswilllowerthe

energycost,improvethewastemanagementandreduce

ipleassaultonplantoperating

challengesisaproprietarytechnologythatgasifiesbiomass

byreactingitwithsteamathightemperaturestoforma

cleanburningsynthesisgas(calledasthesyngas,hydrogen

andcarbonmonoxideina2to1ratio).Themoleculesinthe

biomass(primarilycarbon,hydrogenandoxygen)andthe

moleculesinthesteam(hydrogenandoxygen)reorganizeto

formthissyngas[7].

ficationsystems

Gasificationforpowerproductioninvolvesthe

devolatilizationandconversionofbiomassinan

atmosphereofsteamand/orairtoproduceamedium

orlowcalorifisprent,theratioof

numberofvariablesaffectgasificationbadprocess

blownordirectlyheatedgasifiers,utheexothermic

reactionbetweenoxygenandorganicstoprovidetheheat

necessarytodevolatilizebiomassandtoconvertresidual

carbon-richchars.

Commercialgasifiersareavailableinarangeofsizeand

types,andrunonavarietyoffuels,includingwood,

charcoal,utputis

determinedbytheeconomicsupplyofbiomass,whichis

limitedto80MWinmostregions.

Thebiomassgasificationprocessissimilartoprocess

udformanyyearsbychemicalandpetrochemical

manufacturers,includingmethanol,ammoniaandethylene

echemicalprocess,naturalgasor

anotherhydrocarbonis‘reformed’intoamoredesirable

gaouschemicalfeedstockbyreactingitwithsteamat

rogenandoxygenmolecules

inthesteamareliberatedandariesofreactionsresultina

reorganizationofthecompoundstoformsynthesisgas

(primarilyH

2

,COandCO

2

).Thissynthesisgasisthen

catalyticallyconvertedintomethanol,ammoniaoranother

product.

sisofbiomass

Pyrolysisisdefinedasthethermaldestructionoforganic

sisisthebasic

thermochemicalprocessforconvertingbiomasstoamore

ufulfuel[15].Biomassisheatedintheabnceofoxygen,

orpartiallycombustedinalimitedoxygensupply,to

produceahydrocarbonrichgasmixture,anoil-likeliquid

andacarbonrichsolidresidue.

Inpyrolysisprocess,biomassconvertsintoliquid(bio-

oilorbio-crude),charcoalandnon-condensablegass,

aceticacid,acetone,andmethanolbyheatingthebiomassto

cesscanbe

adjustedtofavorcharcoal,pyrolyticoil,gas,ormethanol

productionwitha95.5%fuel-to-feedeffisis

canbeudfortheproductionofbio-oilifflashpyrolysis

processareudandarecurrentlyatpilotstage[16].

Someproblemsintheconversionprocessanduoftheoil

needtobeovercome;theincludepoorthermalstability

ingbyloweringtheoxygen

contentandremovingalkalisbymeansofhydrogenation

andcatalyticcrackingoftheoilmayberequiredforcertain

applications[12].

Pyrolysisofwoodhasbeenstudiedasazonalprocess

[17].Thermaldegradationpropertiesofhemicellulos,

cellulosandlignincanbesummarizedasfollows[18]:

ulo.

oflignin

Pyrolysisofbiomassisthermaldecompositionofthe

coal,pyrolysisisarelativelyslowchemical

ction

mechanismsofbiomasspyrolysisarecomplexbutcanbe

definedinfivestagesforwood[19]:

reandsomevolatileloss.

ownofhemicellulo;emissionofCOandCO

2

.

rmicreactioncausingthewoodybiomass

temperaturetorifrom525to625K;emissionof

methane,hydrogenandethane.

alenergyisnowrequiredtocontinuethe

process.

tedecompositionoccurs.

opertiesofbiomass

Thelimitationswereprimarilyduetorelyingonbiomass

asthesolesourceoffuel,despitethehighlyvariable

hmoistureandashcontentsin

biomassfuelscancauignitionandcombustionproblems.

Themeltingpointofthedissolvedashcanalsobelowwhich

eofthelower

heatingvaluesofbiomassaccompaniedbyflamestability

ticipatedthatblendingbiomasswithhigher

qualitycoalwillreduceflamestabilityproblems,aswellas

minimizecorrosioneffects.

Themethodsofbiomassfuelanalysaregivenin

soffersimportantadvantagesasa

combustionfeedstockduetothehighvolatilityofthefuel

andthehighreactivityofboththefuelandtheresulting

r,itshouldbenoticedthatincomparisonwith

solidfossilfuels,biomasscontainsmuchlesscarbonand

,chlorine

contentsofcertainbiofuels,likestrawcanexceedthelevel

as/ProgressinEnergyandCombustionScience30(2004)219–230222

ombustionapplications,biomasshasbeen

fireddirectlyeitheraloneoralongwithaprimaryfuel.

Chlorine,whichisfoundincertainbiomasstypes,suchas

straw,hchlorine

andalkalicontentofsomebiomassfuelsraiconcerns

atestconcernfocusonhigh-

temperaturecorrosionofsuper-heatertubesinducedby

chlorineonthesurface.

Biomassdiffersfromcoalinmanyimportantways,

includingtheorganic,inorganic,energycontent,and

vetocoal,biomassgenerally

haslesscarbon,moreoxygen,moresilicaandpotassium,

lessaluminumandiron,lowerheatingvalue,higher

moisturecontent,andlowerdensityandfriability(Table4).

Thepointontheburningprofileatwhichtherateof

weightlossduetocombustionisamaximumcalledas‘peak

temperature’.Theburningprofilepeaktemperatureis

usuallytakenasameasureofthereactivityofthesample.

Thepeaktemperaturesforbiomasssamplesgenerallyvary

from560to575K.

Thestructuralanalysoflectedbiomasssamplesare

imateanalysoftypicalfuel

samplesgivenintheliteratureanddeterminedareshownin

Tables6and7,fficulttoestablisha

reprentativebiomassduetolargepropertyvariations,but

compositionvariationsamongbiomassfuelsarelarger

thanamongcoals,butasaclassbiomasshassubstantially

viously,

nitrogen,chlorine,andashvarysignificantlyamong

omponentsaredirectlyrelatedto

NO

x

emissions,corrosion,s

generallyhasrelativelylowsulfurcomparedtocoal.

Theproximateanalysoflectedbiomasssamples

givenintheliteratureanddeterminedasdefinedbyASTM

areshowninTables8and9,rganic

propertiesoflectedfuelsamplesaregiveninTable10.

Inorganiccomponentsincoalvarybyrankandgeographic

Table3

Methodsofbiomassfuelanalys

PropertyAnalyticalmethod

HeatingvalueASTMD2015,E711

ParticlesizedistributionASTME828

Proximatecomposition

MoistureASTME871

AshASTMD1102(873K),

ASTME830(848K)

VolatilematterASTME872,ASTME897

Fixedcarbonbydifference

Ultimateelemental

Carbon,hydrogenASTME777

NitrogenASTME778

SulfurASTME775

ChlorineASTME776

OxygenBydifference

AshelementalASTMD3682,ASTMD2795,

ASTMD4278,AOAC14.7

Table4

Physical,chemicalandfuelpropertiesofbiomassandcoalfuels

PropertyBiomassCoal

Fueldensity(kg/m3),500,1300

Particlesize,3mm,100mm

Ccontent(wt%ofdryfuel)42–5465–85

Ocontent(wt%ofdryfuel)35–452–15

Scontent(wt%ofdryfuel)Max0.50.5–7.5

SiO

2

content(wt%ofdryash)23–4940–60

K

2

Ocontent(wt%ofdryash)4–482–6

Al

2

O

3

content(wt%ofdryash)2.4–9.515–25

Fe

2

O

3

content(wt%ofdryash)1.5–8.58–18

Ignationtemperature(K)418–426490–595

Peaktemperature(K)560–575–

FriabilityLowHigh

Dryheatingvalue(MJ/kg)14–2123–28

Table5

Structuralanalysoflectedbiomasssamples(wt.%daf)

FuelsampleHemicellulosCelluloLigninExtractive

mattera

Hazelnutshell30.426.842.93.3

Wheatstraw39.428.818.6–

Olivehusk23.624.048.49.4

Beechwood31.245.321.91.6

Sprucewood20.749.827.02.5

Corncob31.050.515.03.5

Teawaste19.930.240.09.9

Walnutshell22.725.652.32.8

Almondshell28.950.720.42.5

Sunflowershell34.648.417.02.7

Source:Ref.[32].

aAlcohol/benzene(1/1,v/v)extractives.

Table6

Ultimateanalysoftypicalfuelsamplesgivenintheliterature(wt

%ofdryfuelwithash)

FuelsampleCHNSO(diff.)Reference

Hazelnutshell52.85.61.40.0442.6[32,57]

Sawdust46.95.20.10.0437.8[50]

Cornstover42.55.00.80.242.6[51]

Poplar48.45.90.40.0139.6[52]

Ricehusk47.85.10.1–38.9[53]

Cottongin42.85.41.40.535.0[54]

Sugarcanebagas44.85.40.40.0139.6[52]

Peachpit53.05.90.30.0539.1[52]

Alfafastalk45.45.82.10.0936.5[55]

Switchgrass46.75.90.80.1937.4[55]

as/ProgressinEnergyandCombustionScience30(2004)219–230223

ss,coalhasmorealuminum,iron,and

shasmoresilica,potassium,

dandwoody

materialstendtobelowinnitrogenandashcontentwhile

theagriculturalmaterialscanhavehighnitrogen(Tables6

and7)andashcontents(Tables8and9).

Strawmayhaveahighcontentofchlorineand

potassium,elementswhichareveryundesirablein

ofK

2

OandClwerefoundas

20.0and3.6%inash,respectively,inwheatstraws

(Table10).Apretreatmentprocesstoremovepotassium

fromstrawfuelmaybebadonpyrolysisfollowedby

awispyrolyzedatmoderatetempera-

turesatwhichthepotassiumisretainedinthechar.

Potassiumandresidualchlorineareextractedfromthe

residualcharbywater[20].Charandpyrolysisgasmay

thenbeudinaconventionalboilerwithoutproblems

uatethis

pretreatmentprocessknowledgeaboutthecharwash

s,whenreactedwithsulfatesand

chlorine,mayharmthermochemicalconversionsystems,

foulingheatexchangesurfaces,gas-turbineblades,and

otherpowersystemcomponents[21].

tionpropertiesofbiomass

Ingeneralcombustionmodelsofbiomasscanbe

classifiro-

scopicpropertiesofbiomassaregivenwithfor

macroscopicanalysis,suchasultimateanalysis,heating

value,moisturecontent,particlesize,bulkdensity,and

tiesformicroscopic

analysisincludethermal,chemicalkinetic,andmineral

data[22].Fuelcharacteristicssuchasultimateanalysis,

heatingvalue,moisturecontent,particlesize,bulk

density,andashfusiontemperatureofbiomasshave

beenreviewed[23].Fuelpropertiesforthecombustion

analysisofbiomasscanbeconvenientlygroupedinto

physical,chemical,thermal,andmineralproperties.

Physicalpropertyvaluesvarygreatlyandproperties

suchasdensity,porosity,andinternalsurfaceareaare

relatedtobiomassspecieswhereasbulkdensity,particle

size,andshapedistributionarerelatedtofuelpreparation

methods.

Importantchemicalpropertiesforcombustionarethe

ultimateanalysis,proximateanalysis,analysisofpyrolysis

products,higherheatingvalue,heatofpyrolysis,heating

valueofthevolatiles,andheatingvalueofthechar.

Thermalpropertyvaluessuchasspecificheat,thermal

conductivity,andemissivityvarywithmoisturecontent,

temperature,anddegreeofthermaldegradationbyoneorder

ldegradationproductsofbiomass

consistofmoisture,volatiles,lesare

furthersubdividedintogassuchaslighthydrocarbons,

carbonmonoxide,carbondioxide,hydrogenandmoisture,

ldsdependonthetemperatureandheating

opertiesvarywithspecies,

locationwithinthebiomass,

Table7

Ultimateanalysoftypicalfuelsamples(wt%ofdryfuelwithash)

FulsampleCHNSClO(diff.)

Coaltype181.54.01.23.0–3.3

Redoakwood50.06.00.3––42.4

Wheatstraw41.85.50.7–1.535.5

Olivehusk49.96.21.60.050.242.0

Beechwood49.56.20.4––41.2

Sprucewood51.96.10.3––40.9

Corncob49.05.40.50.2–44.5

Teawaste48.05.50.50.060.144.0

Walnutshell53.56.61.50.10.145.4

Almondshell47.86.01.10.060.141.5

Sunflowershell47.45.81.40.050.141.3

Source:Refs.[32,34].

Table8

Proximateanalysoflectedbiomassgivenintheliterature(wt%

ofdryfuel)

FuelsampleAshVolatile

matter

FixedcarbonReference

Hazelnutshell1.576.321.2[32]

Sawdust2.882.215.0[50]

Cornstover5.184.010.9[51]

Poplar1.3–16.4[52]

Sugarcanebagas11.3–15.0[52]

Peachpit1.0–19.9[52]

Ricehusk22.661.016.7[53]

Alfafastalk6.576.117.4[55]

Switchgrass8.976.714.4[55]

Table9

Proximateanalysoflectedbiomasssamples(wt%ofdryfuel)

FuelsampleAshVolatilematterFixedcarbon

Beechwoodbark5.765.029.3

Oakwood0.577.621.9

Wheatstraw13.766.321.4

Olivehusk4.177.518.4

Beechwood0.582.517.0

Sprucewood1.780.218.1

Corncob1.187.411.5

Teawaste1.585.513.0

Walnutshell2.859.337.9

Almondshell3.374.022.7

Sunflowershell4.076.219.8

Colzaed6.578.115.4

Pineone1.07.321.7

Cottonrefu6.681.012.4

Oliverefu9.266.124.7

Source:Refs.[30,32,34].

as/ProgressinEnergyandCombustionScience30(2004)219–230224

thepropertiesarehighlyvariable,thelikelyrangeofthe

propertyisgiven[22].

mistryofbiomasscombustion

Combustionisariesofchemicalreactionsbywhich

carbonisoxidizedtocarbondioxide,andhydrogenis

oxidizedtowater.

Inordertounderstandwoodcombustion,itisimportant

tounderstandthepropertiesofwoodwhichdetermineits

fluencingproperties

includeanatomicalstructureandpathwaysformovementof

moisture,moisturecontent,specificgravity,andholocellu-

loandlignin.

Maincombustionreactionsare:

Non-reactingsolid!Heat;drying!PyrolysisðVolatiles;

SteamÞ!Precombustionreactions!Primarygaspha

combustion!Secondarycombustion!Effluentstackgas

mbustionpropertiesoflectedbiomass

samples

Non-isothermalandisothermalthermogravimetrictech-

niqueshavecommonlybeenudtoinvestigatethe

reactivitiesofcarbonaceousmaterials[24–28].Aplotof

therateofweightlossagainsttemperaturewhileburninga

sampleunderoxidizingatmosphereisreferredtoasburning

profile[29].Theburningprofilesofsunflowershellandpine

firstpeak,

obrvedontheburningprofilesofthebiomasssamples

eleasingthe

moisture,somesmalllossinthemassofthesampleoccurred

nlossin

themassofthesamplesstartedatthetemperaturesbetween

450–500K,reprentingthereleaofsomevolatilesand

apidburningregion,therateofmassloss

proceededsorapidlythatitreachedtoitsmaximumvalue.

Rapidlossofmassimmediatelysloweddownatthe

hen,burning

rateapparentlydecreadandconquentlysomesmallloss

inthemassofthesamplecontinuouslywentonaslongas

temperaturewasincreadupto1273K,indicatingtheslow

ndofhold

timeat1273K,samplesreachedtotheconstantweightafter

givenperiods[30].

Themostimportantcharacteristictemperaturesofa

burningprofileareignitiontemperatureandpeaktempera-

ture[31].Theignitiontemperaturecorrespondstothepoint

atwhichtheburningprofi

ignitiontemperaturesofsamplesweredeterminedfrom

theirburningprofiTable11,thetemperatures

weredeterminedas475Kforsunflowershell,463Kfor

colzaed,475Kforpinecone,467Kforcottonrefuand

473Kforoliverefu[30].Thepointontheburningprofile

atwhichistherateofweightlossduetocombustionis

ningprofile

peaktemperatureisusuallytakenasameasureofthe

emperatureswerefoundas

573Kforsunflowershell,as535Kforcolzaed,as565K

Table10

Inorganicpropertiesoftypicalfuelsamples(wt%ofash)

FuelsampleSi

2

OAl

2

O

2

TiO

2

Fe

2

O

3

CaOMgONa

2

OK

2

OSO

3

P

2

O

5

Cl

Coaltype142.020.01.217.05.52.11.45.85.0––

Coaltype259.719.82.18.32.11.80.82.12.00.2–

Coaltype351.522.62.014.93.30.91.02.03.50.2–

Redoakwood49.09.5–8.517.51.10.59.52.61.80.8

Wheatstraw48.03.5–0.53.71.814.520.01.93.53.6

Walnutshell23.12.40.11.516.613.41.032.82.26.20.1

Almondshell23.52.70.12.810.55.21.648.50.84.50.2

Sunflowershell29.32.90.12.115.86.11.535.61.34.80.2

Olivehusk32.78.40.36.314.54.226.24.30.62.50.2

Hazelnutshell33.73.10.13.815.47.91.330.41.13.20.1

Source:Ref.[56].

as/ProgressinEnergyandCombustionScience30(2004)219–230225

forpinecone,as598Kforcottonrefusandas537Kfor

oliverefu(Table11).Therateofweightlossatthe

burningprofilepeaktemperatureiscalledthemaximum

imumcombustionratesofthe

sunflowershell,colzaed,pinecone,cottonrefuand

oliverefuwascalculatedas5.5,2.8,5.2,3.7and3.4mg/

min,respectively[30].

Theweightlosspercentagesoffivedifferentbiomass

theFig.3,theweightlossofthesamplesincreadsharply

ghtlossdifferencesbetweenolive

refuandothersamplesstartedtoincreaabove

efuhasthelowestvolatilemattercontent

andthehighestashcontent;inotherwords,oliverefuhas

ghtlosspercentagesof

thesunflowershell,colzaed,pinecone,cottonrefuand

oliverefuat1273Kwere%95.07,91.05,84.80,86.74

and78.69,respectively[30].

ationofhigherheatingvalue

Thehigherheatingvalues(HHVs)orgrossheatof

combustionincludethelatentheatofthewatervapor

productsofcombustionbecauthewatervaporwas

(inMJ/kg)

ofthebiomassfuelsasafunctionoffixedcarbon(FC,wt%)

wascalculatedfromEq.(1)[32]:

HHV¼0:196ðFCÞþ14:119ð1Þ

Inearlierworks[33,34],formulaewerealsodevel-

opedforestimatingtheHHVsoffuelsfromdifferent

lignocellulosicmaterials,vegetableoilsanddielfuels

mass

fuelssuchascoal,theHHVwascalculatedusingthe

modifiedDulong’sformula[33,35]asafunctionofthe

carbon,hydrogen,oxygen,andnitrogencontentsfrom

Eq.(2):

HHV¼{33:5½CC

本文发布于:2022-11-25 16:05:25,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/19475.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:nonsense
下一篇:生活哲理散文
标签:combustion
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图