BiomedicalSignalProcessingandControl8(2013)400–408
ContentslistsavailableatSciVerScienceDirect
BiomedicalSignalProcessingandControl
journalhomepage:/locate/bspc
Multimodalinformationimprovestherapiddetectionofmentalfatigue
Franc¸oisLaurenta,MarioValderramab,MichelBesrvea,MathiasGuillardc,Jean-PhilippeLachauxd,
JacquesMartineriea,GenevièveFlorencec,∗
aEquipeCogimage(ex-LENA,UPR640),CRICMUMR7225/UMR-S975,UPMC/CNRS/INSERM,47boulevarddel’Hôpital,75651ParisCedex13,France
bUniversityofLosAndes,DepartmentofBiomedicalEngineering,Cra1N
◦
18A-12,Bogotá,Colombia
cInstitutdeRechercheBiomédicaledesArmées(IRBA),DépartementENOP,BP73,91223Brétigny-sur-OrgeCedex,France
dINSERMU821,CentrehospitalierLeVinatier,95boulevardPinel,69675BronCedex,France
articleinfo
Articlehistory:
Received20January2012
Receivedinrevidform8November2012
Accepted22January2013
Availableonline7March2013
Keywords:
EEG
ECG
EOG
Classification
Mentalfatigue
Taskswitching
abstract
Oneofthemajorchallengeinthedetectionofmentalstatesisimprovingtheaccuracyofbrainactivity-
sdthesuitability,for
real-timementalfatiguedetection,ofEEG,EOGandECGmeasurements,takenparatelyortogether.
hparticipant,theblockwiththelowest
errorratefromthefirsttwoblocksandtheblockwiththehighesterrorratefromthelastthreeblocks
werediscriminatedwithamachinelearningalgorithm(supportvectormachine).Theclassificationscores
obtainedwithECGorEOGweregreaterthanwouldbeexpectedbychance(>50%)fortimewindowsof
thebestsinglemodeofdetection,withclassificationscoresrangingfrom80±3%
witha4stimewindowto94±2%itionofECGandEOGfeaturestoEEG
featuressignificantlyincreadclassificationscoresforshorttimewindows(e.g.,to86±3%witha4stime
window,p<0.001).Forshorttimewindows(upto12s),ECGsignificantlyincreadthediscriminatory
powerofEEG,esultsdemonstratethatmentalstatedetectiononthebasisof
extracerebralmeasurementsisfeasibleandthatacombinationofEEGandECGisparticularlyappropriate
fortherapiddetectionofmentalfatigue.
©htsrerved.
uction
Mentalfatiguehasbeendefinedasastateresultingfromthe
prolongedactivityofthebrain,characterizedbybothdecliningper-
formanceandasubjectivefeeling[1].Fatigueisamajorhuman
factorinthesafetyoftransportationsystems[2],andmanystudies
aclas-
sifificationtools
canbeudtoevaluatethepredictivepoweroffunctionalsignals
andarerelevantbecauoftheirpotentialforapplicationtothe
real-timepredictionofbrainstates[3].
Manystudieshaveshownthatelectroencephalographic(EEG)
featuresarerelevantforthedetectionofmentalfatigue[4–7].How-
ever,EEGsaretime-consumingtocarryoutandEEGrecordings
areaffectedbyenvironmentalelectromagneticfields(suchalec-
triclinenoi,noifromelectronicequipment,andvideodisplay
∗
Correspondingauthor.
E-mailaddress:t@(t),
mvalderr@(rama),ve@
(ve),rd@(rd),x@
(J.-x),erie@(erie),
genevieve.florence@(ce).
monitors).ItisthereforenotalwayspossibletocarryoutEEGmea-
sledtoasssmentsof
theufulnessofelectricextracerebralmeasurements,suchalec-
trooculography(EOG)andelectrocardiography(ECG),fordetecting
easurementscanbecarriedoutmoreeasily
r,onlyafewstud-
ieshaveshownthetechniquestobensitiveforthedetection
ofmentalfatigue:anincreainblinkrateasafunctionoftime-
on-taskhasbeenreported[8]andblinkamplitudehasalsobeen
showntobeagoodpredictorofanincreainerrorratedueto
acombinationofsleepdeprivationandtime-on-taskinpilots[9].
Indrivers,asignificantlinearrelationshiphasbeenfoundbetween
thedistancedrivenandthepowerspectrumofheartratevariability
(HRV)analysisinthe0.05–0.15Hzband[10].
EEGandEOGmeasurementscanprovideindicatorsofsleepiness
[11,12],whichis,however,amentalstatedifferentfrommen-
talfatigue,inwhichthereisnotnecessarilyapropensitytofall
asleep[13].Powerspectrumcomponentsofheartratevariability,
theP300componentandwaveletparametersofEEGhavealready
beenstudied,inanalysoftheimpactofprolongedvisualdisplay
r,thevariableshavebeenmeasured
independently,andonlybeforeandafterthefatigue-inducingtask
[14].
1746-8094/$–efrontmatter©htsrerved.
/10.1016/.2013.01.007
tetal./BiomedicalSignalProcessingandControl8(2013)400–408401
EEG,EOGandECGmeasurementshavebeenassdtogether,
todeterminetheaccuracyofaclassifierfordetectingdifferentlev-
elsofmentalworkload[15],butnottoevaluatementalfatigue.
Althoughtheauthorsofthispreviousstudyudtheexpression
“mentalworkload”inthetitleoftheirpaper,theydidnotclearly
defid,theyudtheexpression“functional
stateofthehumanoperator”.Theymodifiedthis“functionalstate”
byincreasingthedifficultyoftheNASAMulti-AttributeTaskBattery
(MATB)applied,assumingthatincreasingthedifficultyofthetask
wouldalter“functionalstate”(e.g.,increathementalworkload).
Theydidnotreallystudymentalfatigue,becautheparticipants
performedtheMATBfor15minonly,inthree5-min-longtests
(balineconditions,lowdifficultyandhighdifficultylevel).
Anotherstudydemonstratedthepotentialofacombinationof
scalpandintracranialEEGandECGfeaturesforidentifyingindi-
vidualsathighriskofepilepticizures,whichcanbeviewedas
anothertypeofmentalstate[16].ThecombineduofEEG,EOG
andECGforthedetectionofmentalfatiguehasneverbeeninves-
tigated,toourknowledge.
Weaddresdfourissues:(1)CaneachoftheEOG,ECGandEEG
methods,udindividually,detectmentalfatiguethroughtheir
respectivemeasurements?Inotherwords,dotheyperformbetter
thanwouldbeexpectedbychance?(2)Whatadvantageistherein
usingallthreemodesofmeasurementtogether?Doesthesimul-
taneousuofEOG,ECGandEEGimprovethedetectionofmental
fatigueoverthatachievedwithEEGalone?(3)Ifso,isthisimprove-
mentduetothecomplementarynatureoftheinformationprovided
bythedifferenttypesofrecording,ashoped,ordoesitresultfrom
moremechanisticeffectsoftheclassificationmethodology,such
asdifferencesinthenumberofquantificationvariables?(4)What
contributionstoEOGandECGfeaturesmaketothemultimodal
detector?Shouldboththeextracerebralmodesofasssmentbe
consideredinadditiontoEEGorcanasimilarpredictionperfor-
mancebeachievedwithjusttwomodesofasssment?
Forthefirsttwooftheissues,wealsostudiedtheinfluence
ofwindowduration(4–30s),whichmaybedeterminantforreal-
,itappearsreasonabletosuggestthatshorter
windowdurationsarelikelytobeassociatedwithearlierdetection.
Finally,foramorephysiologicalapproachtomentalfatigue,we
identifiedthefeatureswiththehighestdiscriminatingpower,for
awindowof30s.
Thisstudywasthusdesignedtodeterminewhetherthecombi-
nationofdifferenttypesofrecordingcouldimprovethedetection
ot
ourobjectivetoprovideadetailedanalysisoftheeffectofmental
fatigueineachofthedifferenttypesofrecording.
Mentalfatiguewasinducedbyincreasingtime-on-task,witha
previouslyvalidatedparadigm[17].
s
mentalparadigm
Thirteenright-handedmalesubjectstookpartinatask-
switchingexperimentcarriedoutinaccordancewiththeHelsinki
asrecordedwitha32-electrodeActiCapTM
andaBrainAmpTMsystem,averticalEOGwithrecordedwithtwo
electrodesaroundthedominanteyeandanECGwasrecordedwith
aleadbetweenabottom-leftcostallocationandatop-leftlocation
intheback.
Subjectswerefirstsubjectedtoatrainingssion,inwhichthey
carriedoutablockoftask(660stimuli)withauditoryfeedbackif
enperformedahalf-blockoftask(330
stimuli)ainingssionwascarriedoutin
tsthenhadanadditionaltrainingssion(one
–letterpairswereprentedinfourquad-
rants,tswereinstructedtorespondpressabutton
indicatingwhetherthenumberwasoddorevenorwhethertheletterwasaconso-
nantoravowel,dependingonthelocationofthenumber–letterpair.
blockoftaskswithfeedbackincasoferror)beforethession.
Theywereaskedtorespondascorrectlyandasquicklyaspossible
toavisualstimulusconsistingofanumberandaletter(Fig.1).Each
stimuluswasdisplayedinoneofthefourquadrantsofasquarebox
placedwithinthesubject’scentralfijectsud
twofimuliappearingin
theuppertwoquadrants,thesubjectswereaskedtorespondtothe
numberstheysaw(rightbuttonpressforevennumbers,leftbutton
pressforoddnumbers).Forstimuliappearinginthelowerquad-
rants,subjectswereaskedtorespondtotheletterstheysaw(right
buttonpressforaconsonant,leftbuttonpressforavowel).Once
thesubjecthadrespondedor2500mshadelapdsincethestim-
uluswasfirstdisplayed,anewstimulusappearedintheadjacent
quadrant,pon-stimulusinterval
(RSI)wasvariable(300,600or1500ms).Eachssionconsisted
ofsixconcutiveblocksof660trialach(approximately20min)
andallssionstookplaceintheafternoon(from2pmto5pm).
Beforethestartofthessionandaftereachblock,thesubjects
filledinthePearson–Byarsfatiguechecklist[18].
mentalstates
Badoftheresultsofpreviouxperiments,wedefinedthe
twomentalstatesofinterestascorrespondingtotwodifferent
blocksoftask[6,17,19].Weconsiderederrorratetobetheprincipal
tivefatiguescoresincreadduring
theexperiment,buttheerrorratedidnotincreamonotonically.
Accordingly,bycontrasttopreviouxperiments,wedidnotcon-
siderthefirstblockasthe“no-fatigueblock”andthelastblock
asthe“fatigueblock”.Instead,weudanapproachinwhichthe
blocksconsidereddependedontheperformanceoftheparticipant.
Foreachsubject,wedefinedtheno-fatigueblockastheblockfrom
thefirsttwoforwhichperformancewashighest,andwedefinedthe
fatigueblockastheblockfromthelastthreeforwhichperformance
waslowest.
equantification
Aslidingtime-windowwasudtoextractelectrophysiological
veraltime-windowdurations,
ainedinthediscussion,30sshould
beasuitableperiodforthecorrectestimationofECGspectrum
features,whereasEEGrhythmsareusuallyobrvedwithsmaller
edtoensurethatatleast10cycleswere
hereforenecessarytou
timewindowsofatleast3s,takingthelowestfrequencystudied
sivewindowsoverlappedby50%.
tures
WecorrectedtheEEGforeyeblinks,gmentingthesignalevery
2sandusingaPCA(principalcomponentanalysis)-badmethod.
tetal./BiomedicalSignalProcessingandControl8(2013)400–408
Wediscardedprincipalcomponentsfeaturingacorrelationwith
anyEOGchannelgreaterthan0.7[20],andctionswithhighlev-
ulatedacommonaveragereference
byexcludingthemostperipheralelectrodes(Fp1,Fp2,F7,F8,T7,T8,
TP9,TP10,P7,andP8)andweappliedthisreferencetothemeasure-
mentsofalltheelectrodes,toeliminatebackgroundnoiwithout
disminatingelectricalactivitiesfrompericranialmuscles.
Meanamplitudesinthe3–7Hz(Â),7–13Hz(˛),and13–18Hz
(ˇ)frequencybandswerecalculatedforeachEEGelectrode(96
features=32electrodes×3features),fromtheamplitudeofeach
signal/electrode:
MA=
1
T
本文发布于:2022-11-25 15:18:03,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/19253.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |