t.994)
43,No.2,pp.371-384
Subject-specificandPopulation-averaged
ContinuationRatioLogitModels
for
MultipleDiscreteTimeSurvivalProfiles
19931
SUMMARY
Subject-specificandpopulation-averagedcontinuationratio
0are
tion,generalized
logit(CRL)models
tofordinal
multinomialresponprobabilitiessummingto1,thecontinuationratioisdefined
tobetheratioofamultinomialprobabilityoverthepartialsumoftheremaining
multinomialprobabilities(e,forexample,Agresti
tAddress
Hershey,PA17033,USA.
htsRerved.
372TENHAVEANDUTTAL
the10trials,eachsubjectwasallowedthreeattemptstofindthetoyaftereing
bjectwasrandomlyassignedto
oneoftwogroups:oneinwhichthemapwasrotatedwhenprentedbyan
mary
questionofinterestis:didtherotatedmapgrouprecoverandeventuallyfindthe
toyassuccessfullyasthenon
-rotatedmapgroup?Hencethefocusoftheanalysis
isonmodellingandcomparingthetrendsincorrectnessacrossthe10locationsin
thetwogroups,wherelocationreprentsadiscretetimevariable.
TheCRLmodel,whichwasintroducedbyCox
(1988)udmiparametric
pieet
(1990),pages
319
-321and337).
Thesubject
-specificandpopulation-averagedCRLmodelsconsideredhereare
extensionsofthelogisticregressionmodelsdiscusdbyZegeretal.(1988).The
subject
-specificCRLmodelisamixedeffectsmodelwheretheexpectationofa
responisconditionalonasubject
-
thepopulation
-averagedCRLmodel,theexpectationofaresponisobtainedby
integratingoutthesubject
-specificrandomeffectsandhenceisinterpretedasan
averageforthepopulationofinterestasoppodtoanindividualsubject.
ThemixedeffectsCRLmodelprentedhereisdistinguishablefromthe
(GEES),which
arescore
-likefunctionsthatarederivedbyincorporatingaworkingcorrelation
matrix
htsRerved.
CONTINUATIONRATIO
LogitModel
Let
i=1,2,3)atthejthhidden
location(forj=1,...,0otherwiforalli,j,k,t
Y4jk/=
allj,k,I,c;=IYUkl=
jthlocation,assumethatthe
randomvector
rk),i=rijkl=1),where
k'srandomeffectsparametersinthesubject-specificCRLmodeldefined
below.
Nextdefine
rijkl
j'4
i=j,kand=
lthgroup,andgiventhatheorshehasfailedtofindthe
toyatthejthhiddenlocationontheprevious
hUkl
i.e.
(1990),
p.337,forahazardrateinterpretationofaratioofprobabilitiessimilartoAuk/.)
Conditionalontheeffectofthekthsubjectinthe
log-
likelihoodsinvolvingthe
ijk+log(l-*ijkl)Yi,jkl
i=l=;
for1,2,3andall1,andwhere$ijkl=1-
isacontinuationratioandcanbeinterpretedastheconditionaloddsthat
subjectkingroup
1,2,3,which
acco
variableindicatingthelocationatwhichthetoyishiddenisordinal,inthatthe
childrenimprovebylearningastheyproceedacrossthe10hiddenlocationsbutthen
Copyright
,b,,PL1X1,
T!*'XIj*2X2j,
0
IthT
rk1
pO,
0;
i.e.
P
flC-'(4)
1
0.
rilrk2
0s52isa3x3variance-covariancematrix.
R~ghtsRerved
CONTINUATIONRATIO
h2-',suchasa
Wishartdistribution,andRandpareanapriori
specified3x3non-singularsymmetricmatrixandapositivescalarrespectively.
tionofSubject-specificModel
ParameterestimationforthemixedeffectsCRLmodelcanbeviewedinterms
ofestimatingunivariateposteriordensities(e,forexample,Stiratellietal.(1984)
andZegerandKarim(1991))ofthe
rkand
52,becauthesimulatedvariancecom-
r,convergenceappearedtobeachieved
(althoughafter1500iterations)withthe
F()denotesthemultivariatenormaldistributionof7,(eAppendixC).
tion-averagedContinuationRatio
(jectsingroup
hesubject-specificmodel
definedinequations(1)and
hFwithamodelthatisanalogoustothemixedeffectsmodelin
equation(3)
376TENHAVEANDUTTAL
logrC/;=pL1*XU+pL2*X2j+
=A;/(1,2,3andalljand
1vector
=Oisthetestofthehy-
pothesisthat,foragivenlocation,theexpectedproportionofallsubjectsinthe
lthgroupwhofindthetoyonthefirstattemptdoesnotdifferfromtheexpected
proportionthatfindthetoyontheithattemptamongthosubjectsinthe
1attempts.
GiventheBernoullilog
-likelihood(2)withAuk/and+uk/replacedbyA$and$$
respectively,wedefinethecorresponding
(i.e.
ivj))forthekthofI,A;,
Dkl
Vk/istheworkingvariance-covariancematrixfortheelements
Ykl.
GEEestimatesoftheparametersinmodel(9)thatarebadonindependence
andexchangeableworkingcorrelationmatricesarereportedbelowwithnaiveand
dwichestimatorisaconsistentestimatorof
thevariance
-covariancestructureoftheGEEestimatesregardlessoftheworking
hevectorof
GEE
-badestimatesofthepopulation-averageddiscretehazardrates(eAppen-
dixkingroupvk/andD~~beestimatesof
nalveestimatorofthevariance-covariancematrixoftheGEEestimatorsis
GEEsare
,whenindependenceholdsandtheindependence
workingcorrelationisud,comparingtheGEEestimateswiththeirrespective
htsRerved
CONTINUATIONRATIO77
TABLE1
NaiieRobust
(tersotherthan@$,i=2,3,I=1,2)exceedinmagnitude(upto15%)
thecorrespondingGEEestimatesofthepopulation-averagedmodelunderboth
246810
locationlocation
mixedeffectstimatesofthepopulationaveragesofthesubject-specifichazard
probabilitiesacrosslocationforeachattemptfor(a)therotatedmappopulationand
non-
rotatedmapgroup:
htsRerved
TENHAVEANDUTTAL
TABLE2
Obrvedpercentage
1RotationPercentagesforthefollowingnumberofIIstatus
attempt:
2
Yes24.421.816.5
(42/254)
No53.540.725.2
(32/127)
0.50/0.17=-
0.19/0.16=-1.19)andmixedeffects(Z=-
0.40/0.22=-1.82)incontrastwith
theclearlynon
-significantestimatesoftheotherapproaches.
Thefrequencies(summedacrosslocation)andcorrespondingpercentagesforthe
cross
-classificationoftherotateandattempteffectsaredisplayedinTable2tohelp
toexplainthedifferencesingroup
-specificattempteffectestimatesamongthe
saprecipitousdropinpercentagecorrectbetweenattempts1and
3(53.5%comparedwith25.2%)forthenon
-rotatedmapgroup,whichisshown
ubstantialdropfrom53.5%to
40.7%betweenattempts1and2forthenon
-rotatedmapgroupcorrespondstothe
.
2(a)revealsthatfortherotatedgrouptheindependence
GEEprocedureweightedthespikeatlocation7forattempt1inFig.
(i.e.l?(hiikl);e
AppendixC)withthecorrespondingfittedvaluesfromtheexchangeabilityGEE
estimates
htsRerved
CONTINUATIONRATIO
(a)
-,attempt1;.-.-....,attempt2;-------,attempt3
oftheindependenceGEEestimatesofAtlandthemixedeffectestimatesofAtl,
revealingpooreragreementbetweenthetwotsofestimates.
yofSubstantiveResults
Althoughthefollowingresultsarebadonthesubject-specificestimatesinTable
1,theyaresupportedbyallmodels.
(a)Foragivensubjectintherotatedmapgroup,theconditionalprobability
ofacorrectchoiceimprovedsignificantlyacrosslocations(linear
0.086/0.015
0.095/0.025=-3.8)sothattheconditionalprobabilityof
B(hijkl))versus
thecorrespondingfittedvaluesfromtheexchangeabilityandindependenceGEEestimates,parately
Co~vriaht
TENHAVEAND
Qforthemixed
effectsmodel(3)t
Componentof
nint
0.310.30
0.140.059
0.61
Qint-in0.00850.0083
0.00340.00250.016
%n-quad0.00069
0.000650.00039
0.0000150.0015
Oquad
0.01
97.5Vodesignatethe2.5and97.5percentiles
respectively.
successdidnotreachtheconditionalsuccessrateonattempt1ifthesubject
hadreceivedanon
-rotatedmap.
(b)Foragivensubjectinthenon
-rotatedmapgroup,theconditionalprob-
abilityofacorrectchoicedidnotriasmuchacrosslocationasifthe
subjecthadreceivedarotatedmap(linear
-rotatedZ=-
3.71),whichcontrastswiththenon-significantattempteffectsforagiven
subjectintherotatedmapgroup.
Finally,theposteriorestimatesanddensitiesofthevariancecomponzntspre
-
ntedinTable3andFig.4revealthattheestimateddensityofthevariance
componentforthelineartermismasdnear
2(a)
and
subject-
specifichazardratetheneithermodelistheoreticallyandempiricallyappropriate,
althoughthepopulation-averagedmodeliasiertofit.
Copyright
CONTINUATIONRATIO
--RotatedRotateQuadratic
alposteriordensitiesofreprentativefixedeffectsandvariancecomponent
parametersofthesubject-specificmodel(3):thefullanddottedverticallinesindicatethepositions
oftheindependenceandexchangeabilityGEEestimatesrespectively,correspondingtothedisplayed
fixedeffectsdistributions
TheobrveddifferencesbetweentheindependenceandexchangeabilityGEE
estimatesoftheattempteffectsareattributabletotherelativelysmallnumbersof
subjects(42orfewer)onwhichthecondandthirdattempteffectstimatesare
ferencefortheexchangeabilityGEEestimateconformswithprevious
work(e,forexample,Lipsitzetal.(1991)andLiangetal.(1992)).However,
McDonald(1993)contendsthattheindependenceGEEestimateismore'stable'than
GEEestimatesthataccountforworkingcorrelationswhenfittingbinarylogistic
iningwhichviewholdsforCRLmodels
isasubjectoffuturerearch.
JL0.010.020.03
REvarianceintRE
CA53787whenhewasVisitingAssistantProfessor,Department
ofBiostatistics,awerecollectedunderagrant
horswouldliketothankProfessorMark
,tworefereesandtheAssociateEditorforinvaluablecommentsthat
substantiallyimprovedthepaper.
Copyright
382TENHAVEANDUTTAL
AppendixA
TheextensionofClayton'sbufferedstochasticsubstitutionalgorithmtotheCRLmodel
mthefollowingthree
steps,whichcompriabufferedstochastic
62and
thisstep
(B2th)repetitionofstep(b),
simulatenewP,whichthenenterthepoolofsimulationsof62andPfrom
lly
B1was
increadto100and
62-'.Giventhe
Wishartdistribution
withparametersthatarefunctionsofT~,
p=
Ode11andFeivson(1966).
Asanexampleofsimulatingtherandomandfixedeffectsparametersattheithiteration,
considersimulatingthefirstrandomeffectlementforsubjectk,
)equaltheproductoftheexponentiatedlog-likelihoodfunction
(2)andthepriordefinedindistribution(9,andlet
(pes)ectionsamplingalgorithmud
tosimulateavaluefor
rp,canthenbedescribedasfollows:
(a)
sample);
(b)
generatea
variance-
covariancematrixofthemultivariatesplitt-densityismatchedateachiterationtothe
inverHessianofthelog
-likelihoodpriorsuchthatthenumberofrejectionsforagiven
cisminimizedapproximately(eCarlinandGelfand(1991)fordetails).
AppendixC
FollowingKarimandZeger(1992)andZegeretal.
~teach
E(Aijkl)badonthesimulatedfixedeffectsparametersinthesubject-specificprobability
modelfortheIthgroupontheithattemptatthejthhiddenlocation:
htsRerved.
CONTINUATIONRATIO
(14)
where
Ulthcombination,oj(Q)=I[(16~3)/15~)'~X,~+~~.11-3",
XZi)and(Aijkl)istaken
acrossthe2000post
-convergenceiterationsforeachgroup-location-attemptcombination,
thusyieldingtheplotsoftheposteriorestimatesE(Aw)
ofthepopulation-averaged
discretehazardratesinFigs
2(b).
AppendixD
TheGEE-badestimateofA$[iscomputedas
=$GI()-
$*istheexchangeabilityorindependenceGEEestimateoftheparam-
etersinthepopulation-averagedmodel(9).
AppendixE:ListingofMapData
Eachlineconsistsofasubject'srotationstatus
LIL2L3L4LlORotateLlL2L5L6L7L8L9
htsRerved
384TENHAVEANDUTTAL
RotateLSL9LIORotateL5L10
References
Agresti,A.(1990)k:Wiley.
Carlomethodfor
Soc.B,34,
187-220.
t.
ASS.,83,414-425.
Fienberg,on,W.M.(1978)Identificationandestimationofage
-period-cohorteffects
intheanalysisofdiscretearchivaldata.
Carlointegration.
631-644.
Liang,K.-er,S.L.(1986)Longitudinaldataanalysisusinggeneralizedlinearmodels.
Biometrika,73,13-22.
Liang,K.
-Y.,Zeger,ish,B.(1992)Multivariateregressionanalysforcategoricaldata
(withdiscussion).t.
Soc.B,55,391-397.
.,61,198-203.
Ryan,L.(1992)rics,48,163-174.
Stiratelli,R.,Laird,e,J.H.(1984)Random
-effectsmodelforrialobrvationswith
rics,40,961-971.
Thompson,Jr,W.A.(1977)trics,
33,436-470.
Zeger,im,M.R.(1991)t.
Ass.,86,75-90.
Zeger,S.L.,Liang,K.-ert,
'."--
本文发布于:2022-11-25 12:30:49,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/18476.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |