2016高考真题

更新时间:2022-11-25 04:47:25 阅读: 评论:0


2022年11月25日发(作者:同学会发言稿)

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

绝密★启封并使用完毕前

试题类型:A

2016年普通高等学校招生全国统一考试

理科数学

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5

页.

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.

3.全部答案在答题卡上完成,答在本试题上无效.

4.考试结束后,将本试题和答题卡一并交回.

第Ⅰ卷

一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符

合题目要求的.

(1)设集合

2{|430}Axxx

{|230}Bxx

,则AB

(A)

3

(3,)

2



(B)

3

(3,)

2

(C)

3

(1,)

2

(D)

3

(,3)

2

(2)设

(1i)1ixy

,其中x,y是实数,则i=xy

(A)1(B)

2

(C)

3(D)2

(3)已知等差数列

{}

n

a

前9项的和为27,10

=8a

,则100

=a

(A)100(B)99(C)98(D)97

(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班

车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是

(A)

3

1

(B)

2

1

(C)

3

2

(D)

4

3

(5)已知方程1

32

2

2

2

nm

y

nm

x

表示双曲线,且该双曲线两焦点间的距离为4,则

n的取值范围是

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

(A)(–1,3)(B)(–1,3)(C)(0,3)(D)(0,3)

(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几

何体的体积是

3

28

,则它的表面积是

(A)17π(B)18π(C)20π(D)28π

(7)函数y=2x2–e|x|在[–2,2]的图像大致为

(A)(B)

(C)(D)

(8)若101abc,,则

(A)ccab(B)ccabba

(C)

loglog

ba

acbc(D)

loglog

ab

cc

(9)执行右面的程序图,如果输入的011xyn,,,则输出x,y的值满足

(A)2yx(B)3yx(C)4yx(D)5yx

(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

|DE|=25,则C的焦点到准线的距离为

(A)2(B)4(C)6(D)8

(11)平面a过正方体ABCD-A

1

B

1

C

1

D

1

的顶点A,a//平面CB

1

D

1

,a平面ABCD=m,a平面

A11ABB=n,则m、n所成角的正弦值为

(A)

3

2

(B)

2

2

(C)

3

3

(D)

1

3

12.已知函数()sin()(0),

24

fxx+x



,为()fx的零点,

4

x

为

()yfx图像的对称轴,且()fx在

5

1836









,单调,则

的最大值为

(A)11(B)9(C)7(D)5

第II卷

本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.

第(22)题~第(24)题为选考题,考生根据要求作答.

二、填空题:本大题共4小题,每小题5分

(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.

(14)5(2)xx的展开式中,x3的系数是.(用数字填写答案)

(15)设等比数列满足

an

满足a

1

+a

3

=10,a

2

+a

4

=5,则a

1

a

2…a

n

的最大值为。

(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要

甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,

用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。学.科网

该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产

品B的利润之和的最大值为元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.

(17)(本题满分为12分)

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

ABC的内角A,B,C的对边分别别为a,b,c,已知2cos(coscos).CaB+bAc

(I)求C;

(II)若7,cABC的面积为

33

2

,求ABC的周长.

(18)(本题满分为12分)

如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD,

且二面角D-AF-E与二面角C-BE-F都是60.

(I)证明;平面ABEF

平面

EFDC;

(II)求二面角E-BC-A的余弦值.

(19)(本小题满分12分)

某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器

时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,

则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台

这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X

表示2台机器三年内共需更换的易损零件数,

n

表示购买2台机器的同时购买的易损零件数.

(I)求X的分布列;

(II)若要求()0.5PXn,确定

n

的最小值;

(III)以购买易损零件所需费用的期望值为决策依据,在19n与20n之中选其一,应

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

选用哪个?

20.(本小题满分12分)

设圆222150xyx的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,

D两点,过B作AC的平行线交AD于点E.

(I)证明EAEB为定值,并写出点E的轨迹方程;

(II)设点E的轨迹为曲线C

1

,直线l交C

1

于M,N两点,过B且与l垂直的直线与圆A交于

P,Q两点,求四边形MPNQ面积的取值范围.

(21)(本小题满分12分)

已知函数2)1(2)(xaexxfx)(有两个零点.

(I)求a的取值范围;

(II)设x

1

,x

2

是的两个零点,证明:x1

+x

2

<2.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,

2

1

OA为半径作圆.

(I)证明:直线AB与⊙O相切

(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

(23)(本小题满分10分)选修4—4:坐标系与参数方程

在直线坐标系xoy中,曲线C

1

的参数方程为



tay

tax

sin1

cos

(t为参数,a>0)

。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C

2

:ρ=4cosθ.

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

(I)说明C

1

是哪种曲线,并将C

1

的方程化为极坐标方程;

(II)直线C

3

的极坐标方程为a0

,其中a0

满足tan=2,若曲线C

1

与C

2

的公共点都在

C

3

上,求a。

(24)(本小题满分10分),选修4—5:不等式选讲

已知函数f(x)=∣x+1∣-∣2x-3∣.

(I)在答题卡第(24)题图中画出y=f(x)的图像;

(II)求不等式∣f(x)∣﹥1的解集。

2016年普通高等学校招生全国统一考试

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

理科数学参考答案

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符

合题目要求的.

(1)D(2)B(3)C(4)B(5)A(6)A

(7)D(8)C(9)C(10)B(11)A(12)B

二、填空题:本大题共4小题,每小题5分

(13)2(14)10

(15)64(16)216000

三、解答题:解答应写出文字说明,证明过程或演算步骤.

(17)(本小题满分为12分)

解:(I)由已知及正弦定理得,2cosCsincossincossinC,

即2cosCsinsinC.

故2sinCcosCsinC.

可得

1

cosC

2

,所以C

3

.

(II)由已知,

133

sinC

22

ab.

又C

3

,所以6ab.

由已知及余弦定理得,222cosC7abab.

故2213ab,从而225ab.

所以C的周长为

57

(18)(本小题满分为12分)

解:(I)由已知可得FDF,FF,所以F平面FDC.

又F平面F,故平面F平面FDC.

(II)过D作DGF,垂足为G,由(I)知DG平面F.

以G为坐标原点,GF的方向为

x

轴正方向,GF为单位长度,建立如图所示的空间直角

坐标系Gxyz.

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

由(I)知DF为二面角DF的平面角,故DF60,则DF2,DG3,

可得1,4,0,3,4,0,3,0,0,D0,0,3.

由已知,//F,所以//平面FDC.

又平面CD平面FDCDC,故//CD,CD//F.

由//F,可得平面FDC,所以CF为二面角CF的平面角,

CF60.从而可得C2,0,3.

所以C1,0,3,0,4,0,C3,4,3,4,0,0.

设,,nxyz是平面C的法向量,则

C0

0

n

n





,即

30

40

xz

y



所以可取3,0,3n.

设m是平面CD的法向量,则

C0

0

m

m





同理可取0,3,4m.则

219

cos,

19

nm

nm

nm

.

故二面角C的余弦值为

219

19

.

(19)(本小题满分12分)

解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,

10,11的概率分别为0.2,0.4,0.2,0.2,从而

04.02.02.0)16(XP;

16.04.02.02)17(XP;

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

24.04.04.02.02.02)18(XP;

24.02.04.022.02.02)19(XP;

2.02.02.04.02.02)20(XP;

08.02.02.02)21(XP;

04.02.02.0)22(XP.

所以X的分布列为

X122

P

04.016.024.024.02.008.004.0

(Ⅱ)由(Ⅰ)知44.0)18(XP,68.0)19(XP,故

n

的最小值为19.

(Ⅲ)记Y表示2台机器在购买易损零件上所需的费用(单位:元).

当19n时,08.0)500220019(2.0)50020019(68.020019EY

404004.0)500320019(.

当20n时,

04.0)500220020(08.0)50020020(88.020020EY4080.

可知当19n时所需费用的期望值小于20n时所需费用的期望值,故应选19n.

20.(本小题满分12分)

解:(Ⅰ)因为||||ACAD,ACEB//,故ADCACDEBD,

所以||||EDEB,故||||||||||ADEDEAEBEA.

又圆A的标准方程为16)1(22yx,从而4||AD,所以4||||EBEA.

由题设得)0,1(A,)0,1(B,2||AB,由椭圆定义可得点E的轨迹方程为:

1

34

22



yx

(0y).

(Ⅱ)当l与

x

轴不垂直时,设l的方程为)0)(1(kxky,),(

11

yxM,),(

22

yxN.

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究





1

34

)1(

22yx

xky

得01248)34(2222kxkxk.

34

8

2

2

21



k

k

xx,

34

124

2

2

21

k

k

xx.

所以

34

)1(12

||1||

2

2

21

2



k

k

xxkMN.

过点)0,1(B且与l垂直的直线

m

:)1(

1

x

k

y,A到

m

的距离为

1

2

2k

,所以

1

34

4)

1

2

(42||

2

2

2

2

2



k

k

k

PQ.故四边形MPNQ的面积

34

1

112||||

2

1

2



k

PQMNS

.

可得当l与

x

轴不垂直时,四边形MPNQ面积的取值范围为)38,12[.

当l与

x

轴垂直时,其方程为1x,3||MN,8||PQ,四边形MPNQ的面积为12.

综上,四边形MPNQ面积的取值范围为

)38,12[

.

(21)(本小题满分12分)

解:(Ⅰ)

'()(1)2(1)(1)(2)xxfxxeaxxea.

(i)设0a,则

()(2)xfxxe,()fx只有一个零点.

(ii)设0a,则当(,1)x时,'()0fx;当(1,)x时,'()0fx.所以()fx

在(,1)上单调递减,在(1,)上单调递增.

又(1)fe,(2)fa,取b满足0b且ln

2

a

b,则

22

3

()(2)(1)()0

22

a

fbbababb,

故()fx存在两个零点.

(iii)设0a,由'()0fx得1x或ln(2)xa.

2

e

a,则ln(2)1a,故当(1,)x时,'()0fx,因此()fx在(1,)上单调

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

递增.又当1x时,()0fx,所以()fx不存在两个零点.

2

e

a,则ln(2)1a,故当(1,ln(2))xa时,'()0fx;当(ln(2),)xa时,

'()0fx.因此()fx在(1,ln(2))a单调递减,在(ln(2),)a单调递增.又当1x时,

()0fx,所以()fx不存在两个零点.

综上,

a

的取值范围为(0,).

(Ⅱ)不妨设

12

xx,由(Ⅰ)知

12

(,1),(1,)xx,

2

2(,1)x,()fx在(,1)

上单调递减,所以

12

2xx等价于

12

()(2)fxfx,即

2

(2)0fx.

由于2

2

2

222

(2)(1)xfxxeax,而2

2

222

()(2)(1)0xfxxeax,所以

22

2

222

(2)(2)xxfxxexe.

设2()(2)xxgxxexe,则2'()(1)()xxgxxee.

所以当1x时,'()0gx,而(1)0g,故当1x时,()0gx.

从而

22

()(2)0gxfx,故

12

2xx.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题

(22)(本小题满分10分)选修4-1:几何证明选讲

解:(Ⅰ)设E是AB的中点,连结OE,

因为,120OAOBAOB,所以OEAB,60AOE.

在RtAOE中,

1

2

OEAO,即O到直线AB的距离等于圆O的半径,所以直线AB

与⊙O相切.

E

O'

D

C

O

B

A

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

(Ⅱ)因为2OAOD,所以O不是,,,ABCD四点所在圆的圆心,设'O是

,,,ABCD四点所在圆的圆心,作直线'OO.

由已知得O在线段AB的垂直平分线上,又'O在线段AB的垂直平分线上,所以

'OOAB.

同理可证,'OOCD.所以//ABCD.

(23)(本小题满分10分)

解:⑴

cos

1sin

xat

yat



(t均为参数)

∴2

221xya①

1

C

为以01,

为圆心,a为半径的圆.方程为222210xyya

∵222sinxyy,

∴222sin10a

即为

1

C

的极坐标方程

2

4cosC:

两边同乘得22224coscosxyx,

224xyx

即2

224xy②

3

C

:化为普通方程为

2yx

由题意:

1

C

2

C

的公共方程所在直线即为

3

C

①—②得:24210xya

,即为

3

C

∴210a

∴1a

(24)(本小题满分10分)

解:⑴如图所示:

关注公众号“真题备考”,下载历年真题、分类汇编、题源探究

⑵

41

3

321

2

3

4

2

xx

fxxx

xx





,≤

,≥

1fx

当1x≤,

41x

,解得5x或3x

1x∴≤

3

1

2

x,

321x

,解得1x或

1

3

x

1

1

3

x∴或

3

1

2

x

3

2

x≥,

41x

,解得5x或3x

3

3

2

x∴≤或5x

综上,

1

3

x或13x或5x

1fx∴,解集为

1

135

3









,,,

本文发布于:2022-11-25 04:47:25,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/16354.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图