六年级数学辅导

更新时间:2022-11-24 18:59:45 阅读: 评论:0


2022年11月24日发(作者:日语在线翻译excite)

分数乘法

例1:看图写算式。

(1)+()+()=()(2)+()=()

×()=()×()=()

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

例2:计算下面各题。

×3×62××9

分数乘整数,用分数的分子和整数相乘的积做分子,分母不变。能约分(化简)的要约分(化简)。

例3:计算下面各题

××××

分数乘分数,用分子相乘的积做分子,分母相乘的积做分母。能约分(化简)的要约分(化简)。

例4:先计算,再观察,看看有什么规律。

乘积是1的两个数互为倒数。

8

3

×

3

8

15

7

×

7

15

5

×

5

1

求倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

5

3

的倒数是

3

5

a

1

的倒数是

a

,

a

的倒数是

a

1

a

≠0),3的倒数是

3

1

,0.4的倒数是

2

5

练习一

一、乐想巧填。

1.6×表示(),×表示()。

2.米的是()米,公顷的是()公顷。

3.3米的等于()米的。

4.一个数乘分数,就是求这个数的()。

5.的倒数是(),()的倒数是,和()互为倒数。

二、判断。

1.一个数乘分数,积一定比它本身小。()

2.1的倒数是1,0的倒数是0。()

3.7千克的与1千克的相等地。()

4.和,是倒数,也是倒数。()

5.4个相加,可以写成+++,也可以写成

三、计算大本营

1、42×11××

××

2、小时=()分米=()厘米吨=()千克

四、列式计算我最棒。

1.5的是多少?2.4个是多少?3.千克的是多少千克?4.小时的是多少小时?

五、快来显身手(比较大小)。

○×○×○○

六、实践乐园。

①一瓶果汁重千克,20瓶果汁重多少千克?②一只水箱可以容水500千克,箱水重多少千克?

③一个平行四边形的底是6米,高是底的倍,高是多少?

④一个三角形的底是12厘米,高是底的,这个三角形的面积是多少平方厘米?

第二章分数乘法混合运算

分数加法、减法、乘法混合在一起的时候,运算顺序跟整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

乘法的交换律:乘法结合律:乘法分配律:

例1:先说说下面各题的计算顺序,然后再计算。

12-×()

例2:用简便方法计算下面各题。

(+)

练习二

选择题。

1.+=()。A.B.C.

2.一根铁丝长4米,用去了它的,还剩下()米。A.B.C.

3.计算+的结果是()。A.B.C.

4.要简便计算,应该运用乘法()律。A.B.C.

5.8元的是()。A.B.C.

二、计算下面各题。

+1+(5-)-+

用简便方法计算下面各题。

13--(+)(-)(8+)

125

1

+0.08﹚×125

7

5

18

-﹙

7

5

8

4

3

1

17

8

×

8.0

4

5

17

9

×0.8

解决问题。

阳光小学有男生750人,女生人数是男生的4/5,这个学校有女生多少人?一共有学生多少人?

李庄共有小麦地320公亩,水稻地比小麦地多1/4,这个庄的水稻地比小麦地多多少公亩?有水稻地多少公亩

3.修一条公路,长1000米,甲队已经修了这条路的2/5,剩下的由乙队修,乙队修多少米?

第三章分数乘法应用题

例1:一件外套的价格是75元,一件毛衣的价格是外套的。一件毛衣多少元?

例2:有9000千克的黄沙,运走了它的,还剩下多少千克?

例3:老隆镇第一小学四月份用电160千瓦时。五月份比四月份节约,六月份的用电量刚好是五月份的。老

隆镇第一小学六月份用电多少千瓦时?

练习三

一.填空。

1.指出下面每组中的两个量,应把谁看做单位“1”。

(1)男生人数占女生人数的4/5。()(2)甲的6/7相当于乙。()

(3)乙的5/9与甲相等。()(4)男工人数比女工人数少1/8。()

2.一个数是56,它的4/7是();120的2/3的4/5是()。

3.甲数是720,乙数是甲数的1/6,丙数是乙数的4/3倍,丙数是()。

4.学校买来新书240本,其中的2/3分给五年级。这里是把()看作单位“1”,如果求五年级分到多少

本?列式是()。

5.五年级一班参加课外小组的有40人,五年级二班参加的人数是五年级一班的4/5。这里是把()

看作单位“1”,如果求五年二班参加多少人列式是()。

6.小红有36张邮票,小新的邮票是小红的5/6,小明的邮票是小新的4/3。如果求小新的邮票有多少张,是把

()看作单位“1”,列式是()。如果求小明有多少张是把()看作单位“1”,列式是(

)。

7.买30千克大米,吃了4/5千克还剩()千克;买30千克大米,吃了4/5,吃了()千克。

二.判断。

1.3吨钢铁的1/4和1吨棉花的3/4同样重。()2.12×2/5就是求12的2/5是多少。()

3.1.2×4/15的积小于被乘数。()4.大于4/9小于7/9的分数只有2个。()

5.3/4吨的2/15是1/10吨。()6.5×2/9表示5个2/9相加。()

三.选择。

1.一种花茶每千克50元,买3/5千克用多少元?()①50×3/5②50+3/5

2.学校买来200千克萝卜,吃了千克还剩多少千克?()①200×3/5②200-3/5

3.两位同学踢毽,小明踢了130下,小强踢的是小明的1/2,两人一共踢了多少下?()

①130×1/2+130②130×1/2③130+1/2

4.果园里有桃树240棵,苹果树的棵数是桃树的3/4,梨树的棵数是苹果树的4/5,梨树有多少棵?()

①240×3/4+240×4/5②240×3/4×4/5③240+3/4×4/5

四.应用题。

1.一桶油10千克,用去这桶油的4/5,用去了多少千克?还剩下多少千克?

2.育民小学有男同学840人,女同学人数是男同学的4/7,这个学校共有同学多少人?

3.一堆煤12吨,又运来它的1/4,现有的煤是多少吨?

4.教师公寓有三居室180套,二居室的套数是三居室的,一居室的套数是二居室的。教师公寓有一居室多

少套?

5.一袋大米重25千克,吃了的比它的还多2千克,吃了多少千克大米?

分数除法

例1:根据乘法算式写出两道除法算式。

=→

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。遇到除法中带有分数时,只要把分

数转化为相应的假分数,就可以按分数除法的法则进行计算。

例2:计算下面各题。

15÷

5

3

24÷

4

3

16

15

÷

8

3

6

5

÷

24

5

例3:解下列方程。

x

×

3

1

5

=1

x

5

3

=3.5

4

3

×

x

8

5

9×﹙

x

2

1

﹚=

4

1

11

x

×﹙7+

2

1

﹚=

2

1

4

练习四

一.填空题。

1.

34

5

÷4意义是﹙﹚。

2.甲乙两数的积是

2

1

,甲数是

4

3

,乙数是﹙﹚。

3.20÷

5

4

=20○﹙﹚=﹙﹚。

分数的除法的意义与整数除法的意义﹙﹚,都是已知两个因数﹙﹚与

其中的一个﹙﹚,求另一个﹙﹚的运算。

55的()是35;

2

1

是﹙﹚的

5

4

﹙﹚8=

12

4

3

=9÷﹙﹚=﹙﹚36=()(填小数)

在分数除以整数里,把一个数平均分成几份,就是求这个数的()。如表示把平均分成2

份,求每份是多少,也就是求的()是多少?算式是()。

一个数的是12,这个数是()。

把米长的绳子平均分成5段,每段长()米,每段占全长的()。

一小时有()个小时。

二、选择题。

下面各题中商大于被除数的是()A.

4

5

÷2B.

7

4

÷

8

1

C.

6

5

÷5D.

8

7

÷6

如果分数的分子扩大100倍,分母不变,分数值将()A不变B.扩大100倍C.缩小100倍D.不能确定

3、0.3÷0.2的值是()A.

3

2

B.

2

1

1

C.

3

1

1

一个数的

8

3

10

3

,求这个数的算式是()。

8

3

×

10

3

B.

8

3

÷

10

3

C.

10

3

÷

8

3

D.

10

3

×

8

3

b

a

6

1

,b是a的()。A.

6

1

B.6倍C.16倍

x÷y=2.4,

y

x

=()。A.

12

5

B.

5

12

C.

12

1

5

1

D.

5

1

÷

12

1

判断对错(正确的打“√”,错误的画“×”)。

15

4

÷

4

3

15

4

×

4

3

5

1

()

13

12

÷

5

4

13

12

()

甲数除以乙数,等于甲数乘乙数的倒数。()

A和B都是自然数,若A÷

8

1

=B×

6

1

,则A>B。()

23

4

÷4与

23

4

×

4

1

的意义相同,结果相同。()

计算题。

5

4

÷

2

1

=

9

8

÷4=5÷

6

5

2

1

÷

5

2

6

5

÷5=

7

6

÷

5

6

=15÷

5

3

24÷

4

3

4

1

5

=1x+

5

4

x=3.67×﹙x+

2

1

﹚=

6

1

8

15

4

x=

30

11

4

3

6

5

8x=

11

8

解决问题。

一种大型的脱粒农用机器

3

2

小时能脱粒

7

6

吨,问这台农用脱粒机1小时能脱粒多少吨?

一桶油倒出

3

2

,刚好倒出36千克,这油原来有多少千克?

饮料厂今年一季度共生产饮料1250吨,正好完成全年计划的

18

5

,这个厂全年计划生产饮料多少吨?

一辆汽车行63千米,用

4

7

小时,它以这样的速度从甲地开往相距126千米的乙地需要多少小时?

分数除法混合运算

例1:先说说下面各题的运算顺序,再计算。

2---)+)

18

一个算式里,如果既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

练习五

一.填空

________

2

1

16.1

6

5

5.1.5

________________

12

7

12

7

12

7

9.4

________________

2

1

6

2

1

6

5

2

1

.3

_______

14

13

9______

5

4

14

13

98.2.2

_________

8

1

155.0_________

9

7

1

15

7

8.1











6.算式

3

2

1)

10

7

5

3

5

2

1

1

5

2

3(

应先算______,再算______,第三步算______,最后算_______

7.



5

1

3

72

1

5

1

3

______

9

8.

1

30

19

2_____]

9

2

5

4

1[

9.

________

6

5

16.516.5

6

1



_________

4

3

6

1

4

1

6

5

.10



二.选择题:



下列算式正确的是

的运算结果是

.2

10

7

1.

10

1

.

2

1

9.

10

3

2.

5

3

3

10

1

4

5

1

1.1

DCBA



A.

6

1

3

1

2

5

1

10

6

1

3

1

2

5

1

10





B.

6

1

3

1

2

5

1

10

6

1

3

1

2

5

1

10



C.



6

1

3

1

2

5

1

10

6

1

3

1

2

5

1

10

D.



6

1

3

1

2

5

1

10

6

1

3

1

2

5

1

10

3.下列问题中,计算正确的有__________()

(A)0题(B)1题(C)2题(D)3题

3

1

21

3

1

25

15

1

2

3

10

2

3

5

14

42

5

7

515

3

2

2

3

5

7

4

7

3

7

7

3

4

三.解答题.(能简便的要简便运算)

(1)

25

7

)

2

1

7

4

(

10

7



[1-(

8

3

4

1

)]÷

4

1

8

3

)

8

9

16

9

(

4

8

1

8

1

2

5



8

3

7

5

8

7

7

1



5

4

)

4

3

6

5

(

5

12



3

2

87.0

2

3

87.3

7

6

2

7

1

3

12

1

11

这个数是多少?少的)一个数比(

求这个数。差是与某数的和里减去)从(

.2

5

2

603

.

36

19

1.

3

1

3

9

1

62

(4)一根电线长

8

1

20

米,剪去一段后.剩下10.5米,问剪去了多少米?

(5)邮局与居民区相距1.25千米.

与工厂区相距

3

2

1

千米.邮递员骑自行车到居民区需

12

1

小时,他用同样的速度骑自行出到工厂区需要多少时间?

分数除法应用题

例1:找出下面各题中的单位“1”,并写出各题的数量关系式。

男生人数是女生人数的。()看作单位“1”,()=()。

白球的个数是红球的。()看作单位“1”,()=()。

做对的题占总数的。()看作单位“1”,()=()。

参加竞赛人数的得到了奖。()看作单位“1”,()=()。

例2:解决问题

(1)水果店运进苹果240箱,运进的梨比苹果多,运进的梨多少箱?

(2)水果店运进苹果240箱,比运进的梨多,运进的梨多少箱?

(3)水果店运进的苹果240箱,比运进的梨少

水果店运进苹果240箱,运进的梨比苹果少

练习六

一.选择。

1.一种商品的原价是840元,第一次降价,第二次又降价,这两次降价()

①相等②不相等③第一次降的多④第二次降的多

2.修一条路,第一天修了150米,是第二天修的,两天正好修完,这条公路长多少米?列式是()

①150÷②150÷+150③150×+150

3.一种商品去年年底价格提高,最近又降低了,现在价格与去年提价前相比,()

①增加了②不变③降低了④无法确定

4.一条公路修了全长的,离中点还有40千米,这条公路全长多少千米?()

①40÷(1-)②40÷③40÷(-)④40÷(1+)

5.5千克糖平均分成8包,每包糖重()

①②千克③④千克

6、把6米长的一根绳子,平均分成13段,每段是这根绳子的()。

①②米③米④

7.鸡的只数是鸭的只数的,则把()看作单位“1”。

①②③

8.六年级人数占全校人数的,则全校人数=()。

①②③

填空。

1.香蕉质量是桃子质量的,把()看作单位“1”。数量关系式:()=(),()

2.12的是(),()的是。

3.一个数的是50,这个数的

4.公鸡有48只,比母鸡多

5.“实际每月比原计划多生产”,应把()看作单位“1”,()+实际每月比计划多生产的量=(

)。

三.应用题。

1.一辆汽车从甲地到乙地,行了全程的,还剩84千米。这辆汽车行了多少千米?

2.参加数学竞赛的男生有40人,比女生多。参加数学竞赛的女生有多少人

3.李师傅家四月份用电42度,四月份比三月份节约,李师傅家三月份用电多少度?

4.一张桌子比一把椅子贵20.8元,每把椅子的价钱是每张桌子价钱的,每把椅子多少元?

5.

工厂第一车间有工人63人,第二车间有37人,第三车间的人数占这两个车间的总人数的。第三车间有多少

人?

第七章比和比的基本性质

两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,(比的后项不能是零)比的前

项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。同分数比较,比的前项相当于分子

,后项相当于分母,比值相当于分数值。

比值通常用分数表示,也可以用小数或整数表示。

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

例1:把下面各除式改写成比的形式。

13÷40.5÷43.7÷4.216÷1862÷31

例2:求比值。

25:152.5:1.5:0.6:63:212:

练习七

一、细心填写。

1、鸡有80只,鸭有100只,鸡和鸭只数的比是(),比值是()。

2、长方形长3分米,宽12厘米,长与宽的比是(),比值是()。

3、小李5小时加工60个零件,加工个数与时间的比是(),比值是()。

4、一本书读了55页,45页没有读,已读与总数的比是(),比值是()。

5、甲数相当于乙数的,甲数与乙数的比是(),乙数与甲数的比是()。

6、三好学生占全班人数的,三好学生与全班人数的比是()。

7、白兔只数的与黑兔相等。白兔与黑兔的比是(),白兔与黑兔的比是()

8、若A÷B=5(A、B都不等于0)则A:B=():()

若A=B(A、B都不等于0)则A:B=():()

二、判断。

1.比的后项不能是0。()2.5:4读作5比4,也可以写作。()

3.5:9的比值是4.2:

三、选择题。

1.两个正方形的边长比是2:3,面积比是()。A.2:3B.3:2C.4:9

2.下面各比中,不是最简分数整数比的是()。A.B.16:15C.21:24

3.20分钟:0.8小时化成最简整数比是()。A.B.5:12C.2

4.4:9的前项乘9,要使比值不变,后项应加上()。A.B.81C.9

5.一种药水,药占,则药与水的质量比是()。A.B.99:1C.1:99

四、把下面的比化成最简整数比。

:0.3:0.02::280.21:6.348:367:3.53:1:0.125

五、求比值。

4:82.4:0.20.75::9:27

第八章比的应用

例1:一个三角形三个内角的度数年比是1:2:3,这个三角形是一个什么三角形?

例2:小明、小红、小云的体重之比是5:4:3,已知小云的体重是30千克,小明和小红的体重各是多少千克

例3:学校把栽72棵树的任务,按照六(1)班三个组的人数分配给各组,一组有9人,二组有7人,三组有8

人。每个小组各应植树多少棵?

练习八

1、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3:2:1。甲、乙、丙三个数各是()、(

)、()。

2、一个直角三角形的两个锐角度数的比是2:1,这两个锐角分别是()度,()度。

3、五角人民币与贰角人民币的张数比为12:35,那么伍角与贰角的总钱数比为()。

4、甲、乙、丙三个人的速度的比为:甲:乙=4:5,乙:丙=6:7。从A地到B地,甲走了20分钟,丙要走(

)分钟。

5、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3:2。求大、小瓶

里各装油()千克,()千克。

6、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5:4,求甲、乙、丙三人各

有图书()本,()本,()本。

7、一个直角三角形的三条边总和是60厘米,已知三条边的比是3:4:5.这个直角三角形的面积是()平方

厘米。

8、盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5。已知三种

颜色的球共175个,问红球有()个。

9、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3:1。问买圆

珠笔和钢笔各花了()元()元。

10、甲、乙两包糖果的重量的比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7

:5。那么两包糖果重量的总和是()。

11、某小学男、女生人数之经是16:13,后来有几位女生转学到这所学校,男、女生人数之比变成为6:5,

全体学生共有880人,问转学来的女生有()人。

12、小明读一本书,已读的和末读的页数比是1:5。如果再读30页,则已读的和末读的页数之比为3:5。这

本书共有()页。

13、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙几个彩球,比例变为2:1

:1。乙给了丙()个彩球。

14、两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精和水的体积之比是

4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积之比是()。

第九章分数乘除法混合运算

例1:计算下面各题。

(2-0.6)

例2:解下列方程。

XXX

例3:共有350千克水果糖,每袋装千克,2小时才装完了,已经装好了多少袋?

练习九

1.把一根2米长的绳子平均分成3段,每段是()米,每段是全长的(——)。

2.把5米长的钢筋锯成一样长的6段,每段占全长的(),每段长

()米。如果锯断钢筋1次需2分钟,把这根钢筋锯成6段共需()分钟。

3.一根长2米的绳子,用去3/4米,还剩下()米;如用去全长的3/4,还剩()米。

4.修一条10千米的公路,第一天修1/5千米,第二天修了余下的1/4,第二天修()千米。

5.一捆电线长30米,第一次剪去3/4,第二次剪去3/5米,还剩()米。

6.女生人数比男生人数多2/5,男生人数比女生人数少(——)。

7.苹果比梨少1/5,梨比苹果多(——)。

8.水结成冰后,体积比原来增加1/11,冰化成水后,体积减少()。

9.甲数的4/5和乙数的5/6相等,那么乙数是甲数的(——)。

10.甲车的速度的1/4和乙车的速度的1/5相等,那么甲是乙的(——)。

11.小红看一本80页的故事书,第一天看了全书的1/5,第二天看了全书的1/4。

(1)两天共看了多少页?列式()

(2)第一天比第二天少看了多少页?列式()

(3)还剩多少页没有看?列式()

12.有一桶油,第一次取出总数的1/5,第二次取出总数的11/50。

(1)两次共取出42千克,这桶油原来重多少千克?列式()

(2)第二次比第一次多取出2.4千克,这桶油原来重多少千克?列式()

(3)还剩58千克,这桶油原来重多少千克?列式()

13.(1)针织厂男职工人数占全厂人数的2/9,男职工是120人,全厂职工有多少人?

(2)针织厂男职工人数占全厂职工人数的2/9,女职工是420人,全厂职工有多少人?

(3)针织厂男职工人数占全厂职工人数的2/9,男职工比女职工少300人,全厂职工有多少人?

(4)针织厂男职工人数占全厂职工人数的2/9,女职工分3个车间,平均每个车间140人,全厂职工有多少人

第十章解决问题

例1:水果店卖出全部西瓜的后,又运进11000千克西瓜,结果比原来多出,问原来西瓜多少千克?

例2:甲数和乙数的比是11:7,乙数和丙数的比是5:2。甲数和丙数的比是多少?

例3:一只河马的最长寿命是52年,比一只乌龟的寿命少,一只乌龟的最长寿命是多少年?

练习十

六年级一班有学生44人,参加合唱队的占全班学生的2/11。参加合唱队的有多少人?

2、一只鸡重2千克,一只鸡的重量是鸭的2/3。这只鸡重多少千克?

3.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6。小新储蓄的钱是小华的2/3。小新储蓄了多少元?

4.一个长方形的面积是平方米,宽是长的米。这个长方形的周长是多少米?

5.3个同学跳绳,小明跳了120下,小强跳的是小明跳5/8,小亮跳的是小强的2/3。小亮跳了多少下?

6.六年级同学收集180个易拉罐,其中的1/3是一班收集的,2/5是二班收集的。两个班各收集多少个?

7.长跑锻炼,小雄跑了3千米,小雄跑的5/6等于小刚跑的。小勇跑的是小雄的4/5。小刚和小勇各跑多少千米

8.小红体重42千克,小云体重40千克,小新的体重相当于小红和小云体重总和的1/2。小新体重多少千克?

9.六年级三个班学生帮助图书室修补图书。一班修补了54本,二班修补的本数是一班的5/6,三班修补的是二

班的4/3。三班修补图书多少本?

10.爸爸比小明大30岁,小明的年龄是爸爸年龄的。爸爸今年多少岁?小明今年多少岁?

11.育才小学学生人数在800—

900之间,总人数能被10整除,男、女生人数的比是6:5。育才小学的男、女生各有多少人?

某校在“献爱心”活动中,六年级三个班共捐钱2700元。一班、二班、三班捐的钱数的比是3:2:4。三个班

各捐多少元钱?

第十一章圆

圆是最简单的曲线图形。

圆中心的一点叫做圆心,用字母O表示。

连接圆心和圆上一点的线段叫做半径,用字母r表示。

通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。

圆的画法:根据圆心到圆上任意一点的距离(即半径)都相等地,我们可以用圆规来画圆。

在一个圆里,所有的半径都相等,所有的直径也都相等。直径等于半径的2倍,半径等于直径的,即:d=2r

或r=。

圆是轴对称图形,任何一条直径都是圆的对称轴,一个圆有无数条对称轴。

圆心决定圆的位置,圆的半径的长度决定圆的大小。

圆周长是围成圆的曲线的长。C=2∏r或c=∏d

圆面积是指圆所占平面的大小。s=∏r2

例1:计算下面各题。

d=1.5米,c=?s=?(2)r=5cm,c=?s=?(3)c=25.12cm,d=?r=?s=?

例2:一个底面是圆形的锅炉,底面圆的周长是1.57米。底面积是多少平方米?(得数保留两位小数)

本文发布于:2022-11-24 18:59:45,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/90/13651.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图