CaptureComplexitybyPartition
YijiaChen⋆1andEnshaoShen⋆⋆2
1Universit´edeParis-Sud,LaboratoiredeRechercheenInformatique,Bˆatiment490,
F-91405OrsayCedex,France,
@
2ShanghaiJiaoTongUniversity,DepartmentofComputerScience,
Shanghai200030,China,
shen-es@
inthispaperaspecialextendedlogic,partition
logicbadonsocalledpartitionquantifiers,isabletocapturesome
importantcomplexityclassNP,PandNLbyitsnaturalfragments.
TheFagin’sTheoremandImmerman-Vardi’sTheoremarerephrad
edual
operatorsforthepartitionquantifiersareintroducedtoexposomeof
iculartheyenableus
toshowa0-1lawforthepartitionlogic,evenwhenfinitevariableinfini-
quence,partitionlogiccannotcount
eringitsbettertheoreti-
calpropertiesandtoolsthanthoofcondorderlogic,partitionlogic
mayprovideuswithanalternative,yetuniforminsightfordescriptive
complexity.
1Introduction
Fromfinitemodeltheory,ormoreprecily,thetheoryofdescriptivecomplexity,
weknowthatallimportantcomplexityclasshavetheirownnaturallogic
rwords,foreachofthecomplexityclass,thereexistsa
logicallanguagecapablefordefiningexactlythoproblemffectivelycheckable
firstofsuchcorrespondenceisduetoFagin[4],which
equatesnondeterministicpolynomialtimewithexistentialcondorderlogicΣ1
1
.
Someofthemajorresultsaresummarizedbythefollowingtable:
ComplexityClass
NP
P
NL
⋆supportedbyCalife,aprojectof“R´eauNationaldeRechercheen
T´el´ecommunications”.
⋆⋆supportedinpartbyNationalFoundationofNaturalScienceofChina.
issues,culminatinginImmerman’sfamousproofofNL=co-NL[10].Never-
thelesscomparedwiththeTuringMachine,theunifiedmachinemodelbehind
complexityclass,tance,we
havedifferentwaystoreachthemfromfirstorderlogic:byaddinghigherorder
quantifiers(orderlogic)orrecursiveoperators(fixed-point
andtransitiveclosurelogic),andthelatterenjoysaninductiveflavorexplicitly.
Someefforthasalreadybeenmadetounifythelogictheories,oneisbyGr¨adel[6],
heidentifiedsomefragmentsofcondorderlogic,saycondorderHornand
Kromlogics,pproachistoaugment
thefirstorderlogicbyariesofLindstr¨omquantifierswhicharebadonsome
particularcompleteproblems[1],suchasusingHamiltonianPathOperatorsto
captureNP[18].
PartitionLogicarisfromtheubiquitousmathematicaloperationas:parti-
tionatintoveraldisjointunion,overeachpartitionsubtcertainproperty
issatisfiicalexampleisthecongruentrelation.H.-D.
Ebbinghausfirstin1990’sintroducedthePartitionQuantifierstomimicsuch
eamaygofurtherbacktoMaltiz,yetwithsome
extrainfinitecardinalityconstraint[13],whichiswellbeyondfinitemodeltheory.
Asitcandefinetheconnectivityofgraphandsomeothernon-first-orderprop-
erties,ritpossssome
nicemodel-theoreticpropertieswhicharenotsharedbycondorderlogic,such
asthedownwardL¨owenheim-Skolen-TarskitheoremandtheTarskiChainthe-
orem[16].Inthemeantimepartitionquantifierscanbelookedasaspecialkind
ofmonotoneLindstr¨omones,sotheirEhrenfeucht-Fraiss´egameismoreelegant
andtractablethanthatofcondorderlogic[15].Thereforeinan,partition
logicislocatesinthelowerlevel(nearfirstorderlogic)ofthefragment-spectrum
ofcondorderlogic.
Theattempttoapplypartitionlogicincomputersciencestartedata-
riesofpapers[14,15,17],inwhichitwasprovedthatonwordandtreestruc-
tures,monadicfragmentofpartitionlogiciquivalenttomonadiccondorder
foundanaturalfragmentofpartitionlogic
equivalenttotransitiveclosurelogic,whileImhofshowedanothersublogicof
itcorrespondstoboundedfixedpointlogic[8].Allthefactsdemonstratethat
paper,weshowthatpartitionlogicmayrveasauniformplatformtoaccom-
modatethemostimportantpartofcomplexityspectrum,,PandNL.
OurmaintheoremprovidesaunifiedcharacterizationofNPandPinpartition
logiconfiniteorderedstructures,inwhichsomekeyparametersofthemachine
ixplicitlyrelatedtothoofthepartitionquantifier,therebygivingtheTuring
machineaclearerlogicalreflilewewillalsoprovea0-1lawfor
partitionlogic,thuswithoutordering,itevencannotdefinesomeverysimple
countingproblemlikeParityoverarbitraryfinitestructures.
Thepaperisorganizedasfollows:wegivethedefinitionofpartitionlogicin
Section2,n3reviewsitsrelationwith
transitiveclosurelogicandleastfixedpointlogicbymeansofthedualoperators
ofpartitionquantifiers,whilethecapturingofNPandPbypartitionlogicis
n5isdevotedtoits0-1law.
Weassumethereaderhassomebasicknowledgeoffinitemodeltheory,espe-
ciallythoresultscompiledintheprecedingtable,comprehensivedetailsand
referencescanbefoundin[3,11].
2Preliminary
Inthispaper,onlyfiotherwi
declared,structuresarenotnecessarilyfi
uFO,SOtodenotefi(ψ)is
thetoffreevariablesinψofacertainlogic.|A|isthecardinalityofthet
A,alsoweoverload|a.
ThelanguageofpartitionlogicistheenlargementofFObyanewformation
rule:foranyk,m,n>0,ifϕ(
y)isawell-formedformulawith|
y|=nk,thenkP
m,n
y
ϕ(
y)isalsowell-formed,andinwhichyarebound.
DefistructureAandz|,A|=kP
m,n
y
ϕ(y,e]where
FV(ϕ)⊆{y,
a
0
...b
0
...e]forarbitrarya
m−1
∈Uand
b
n−1
∈V.
ObviouslypartitionlogicisafragmentofSOandalsoamonotoneLindstr¨om
venience,wewillwritePm,n
y
ϕinlieuof1P
m,n
y
ϕ,andthequantifiers
areparticularlynamedmonadicpartitionquantifiers[17].Foranyk,m,n>0,
letFO(kPm,n)betheextensionofFOwithkPm,eviate
FO(ωP1,1)=
本文发布于:2022-11-24 18:41:29,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/13561.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |