1
Nottobecitedwithoutpriorreferencetotheauthors
InternationalCouncilforthe
ExplorationoftheSea
CM2000/N:13Paper
SpatialandTemporalPatterns
inRecruitmentProcess
SCALEANDPATTERNINRECRUITMENTPROCESSESOFBAYANCHOVY
INCHESAPEAKEBAY
UniversityofMarylandCenterforEnvironmentalScience,
ChesapeakeBiologicalLaboratory,
1WilliamsStreet,Solomons,MD20688,USA
ABSTRACT
Recruitmentofbayanchovy(Anchoamitchilli)variesannuallyinChesapeake
Bay,andlevelsandpatternsarerelatedtovariabilityinhydrologicalconditions
er-trawlsurveys,
conductedthreetimesannuallyfrom1995-1999,overtheentire320-kmlengthof
theBay,providedinformationonannualandregionalpatternsofrecruitment,and
iomassof
anchovywithintheBayatthebeginningofspawningasonsin1995-1999
variedsix-fold,butitalonewasnotdirectlyrelatedtotheyoung-of-the-year
(YOY)ofrecruitmentinOctoberwerelowin1995and
1996(6to7X109)buthigherin1997-1999(19to52X109).Animportant
featureoftherecruitmentprocessisanontogeneticmigrationinwhichYOYbay
anchovytendedtomoveupbayuntiltheyareapproximately45mmTL,after
ongsalinitygradientmayactasa
partialbarriertoupbayordownbaymigration,theeffectbeingmorepronounced
forsmall(<60mmTL)r,asonalwatertemperaturewasmore
importantindeterminingthelatitudinaldistributionofspawningstockbiomass.
Late-summerrecruitmentofYOYanchovywashighwhenwatertemperature
waslowinApril-May,inhibitingupbaymigrationofadultsattheontofthe
spawningason,andinsuringthatmostspawningoccurredinthelowerand
iedRickerstock-recruitmentmodelthat
includedthelatitudinalrangeofadultmigrationbetweenAprilandJuly,explained
98%ofrecruitmentvariability.
2
-77.00W-76.00W
37.00N
38.00N
39.00N
0
25
50
100
200
300
400
500
750
1,000
1,500
2,000
2,500
Upper
Middle
Lower
INTRODUCTION
BayanchovyAnchoamitchilli(Engraulididae)isacoastalspecies
distributedinthewesternAtlanticfromMainetotheGulfofMexico,andisthe
mostabundantandubiquitousfishinChesapeakeBay,thelargestestuaryon
theeastcoastofNorthAmerica(Houde&Zastrow,1991;Able&Fahay,1998).
sonzooplankton,primarily
copepodsandothersmallcrustacea,andispredatedbypiscivoresincluding
veraleconomicallyimportantfishspecies(Baird&Ulanowicz,1989;Luo&
Brandt,1993;Hartman&Brandt,1995).Malesandfemalescanmatureat40-45
mmFL(44-50mmTL)atca10monthsposthatch,andpeakspawningoccursin
July(Zastrowetal.1991).Mosteggsareproducedbyage1individuals(Luo&
Musick,1991;Zastrowetal,1991).Bayanchovycansurvivetoage3+and
tallengthsofage-specificbayanchovywere
reportedtobeage1=55mm,age2=74mm,andage3=88mm(Newberger
&Houde,1995).Temporalandspatialvariabilityinabundance,growth,and
mortalityrateswerereportedforChesapeakeBay(Wang&Houde,1995;Dory
etal.,1996,MacGregor&Houde,1996,Rilling&Houde,1999ab).Dovel(1971)
andLoos&Perry(1991)hypothesizedontogeneticmigrationtoexplainregional
variabilityinabundance.
Newberger&Houde(1995)notedthelargedifferenceinabundancesof
bayanchovyamongyears,apparentlyaresultofvariabilityinannual
r,therewaslittleknowledgeaboutfactorsthatcontrol
levelsofrecruitment,thesizethat
recruitmentofbayanchovyisatleastpartiallydeterminedbythespatial
distributionofspawners,andnotonlybyvariablegrowthandmortalityduring
early-lifestages.
ChesapeakeBayisthelargestestuaryintheUnitedStates.
Geomorphically,itisatypicalcoastalplainestuary(Dayetal.,1989).Its
mainstemis320km
long,varyinginwidth
fromabout6.4kmto50
km(Fig.1).
ChesapeakeBayis
an10%
oftheBayareais>18
mdeep,and
approximately50%is<
tributarienterthe
ChesapeakeBay.
Physically,theBayisa
partially-mixedestuary
(Dayetal.,1989).
Eightyto90%ofthe
eakeBay,andmeanannually-aggregatedbay
anchovycatch-per-unit-effort(wetweightingram/20
mintow)ntallinesindicate
boundariesofthethreeregions.
3
freshwaterenteringtheBayisfromtributariesonitsnorthernandwesternsides.
TheBayreceivesabouthalfitswatervolumefromtheAtlanticOcean,andthe
remainderdrainsintotheBayfroma166,000-km2drainagebasin(Chesapeake
BayProgram,2000).TheBay’ssalinitygradesfromnear-fullawateratits
mouthtofreshwateratitshead,
temperaturesmaybeashighas28oto30oCinmidsummer,andmayfallto1oto
4oCinlatewinter(Murdyetal.,1997).Despiteshallowdepth,theBay’s
mainstemusuallyhasastronglydevelopedpycnoclinewithsharpgradientsin
verticaltemperatureandsalinityprofiles.
Objectivesofthispaperare1)toevaluateeffectsofhydrological
conditionsonstage-specificdistribution,ontogeneticmigration,andrecruitment,
and2)todelineatepatternsinthebayanchovyrecruitmentprocess.
METHODS
Cruis
RearchcruisfortheLandMarginEcosystemRearch(LMER)
program,“TrophicInteractionsinEstuarineSystems(TIES)”
(/ties/)surveyedtheentireBayandwereconducted
threetimesannually(April-May,June-AugustandOctober)from1995to1999
(Fig.1).Planktonandfishcollections,inadditiontoobrvationsof
environmentalvariables,lections(midwatertrawl)and
hydroacousticsurveysinTIEScruiswereconductedatthreeorfourstations
pertranctinthelower-Bay(37o55’N-37o05’N),mid-Bay(38o45’N-37o55’N),
andupper-Bay(39o25’N-38o45’N).Thelowerbayincludes51%oftotal
baywidewatervolume,themiddlebay32%,andtheupperbay17%(Fig.1).
Numbersofmidwater-trawlstationsperTIEScruirangedfrom24to52.
Additionalcruisprovidedinformationinsomeperiodswhentherewereno
TIESsurveys;forexample,inJune1997,August1997,1998,andSeptember
1998.
An18-m2mouth-openingmidwatertrawl(MWT),with6-mmcodend
wasfishedfromthesternA-frame
wasfished
in2-minsteppedintervalsfromsurfacetobottomtofishtheentirewatercolumn.
Fishcatches(orsamples)werecounted,measuredandweighedondeck
immediatelyafteratow.
TheMWTwaffectiveincatchingbayanchovy>30mmtotallength.
Theamountofwaterfishedbya20-minMWTtowwasapproximately5,000m3.
Badonthisinformation,weexpandedtheCPUEvaluestoestimateregional
anchovyabundancesandwetweightsbymultiplyingwatervolumesofeach
region(Cronin,1971).
4
Environmentalfactors
DepthprofilesoftemperatureandsalinityweredeterminedfromCTD
etemperatureandsalinityinthispartiallymixedestuaryshow
distinctfeaturesbetweensurfaceandbottom,theywereintegratedoverthe
entiredepthafterdividingthewatercolumnintoasurfaceandbottomlayer
lowingstepswereappliedto
derivehomogenous(randomlydistributed)parametervaluesforenvironmental
conditions.
Foreachstation,thepycnoclinedepthwastimatedfromthederivative
ofthethird-orderpolynomialregressionfittedtosalinityondepth:
s=ax3+bx2+cx+d,
Wheres:salinity;x:depth(m);a<0,b>0.
Afterdefiningpycnoclinedepthateachstation,themeanwater-column
temperatureandsalinityineachregion(lower,middle,andupperBay)were
ferencesoftemperatureandsalinitybetween
cruiperiods(spring,summer,andfall),anddifferencesbetweentwoadjacent
regions(gradients)alsoweresummarized.
Exploratorystatisticalanalysis
Spatialdatausuallyshowstrongcorrelationsbetweensitessimilarto
auto-correlationintime-riesdata(Cressie,1993).Avariogramcanbederived
tointerpolatevalues(abundancesandbiomass)forgridsorstationswhereno
ropic(bothlatitudinalandlongitudinal)linear
variogramfunctionswithout‘nugget’effectwereudtoestimatebayanchovy
abundancesandbiomassbyinterpolationofvaluesforunsampledgridsof1x
iogramfunctionswere
derivedbyprocvariogramofSAS6.11,andthegriddatafilesweregeneratedby
prockrige2dtoproducedistributionmapsofbayanchovynumberandbiomass,
andhydrologicalvariablessuchastemperatureandsalinity(SAS,1998).
Modallengthsofbayanchovy
cohortsweredeterminedfrom
length-frequencydistributions.
Baywiderelativeabundanceofeach
cohortwastimatedby
Bhattacharyaplots(Bhattacharya,
1967;King,1995).Criteriaof
maximumtotallengthofYOYbay
anchovyareshowninTable1.
Weproducedlength
frequenciesbylatitudetodelineate
possibleontogeneticmigrationof
parameterizethedistributionofYOY
mtotallengthofyoung-of-
the-yearbayanchovy(mm).
YearDateLength(mm)
199523-Jul57
28-Oct78
199617-Jul57
22-Oct77
199711-Jul-
02-Aug57
29-Oct69
199804-Aug57
07-Sep62
19-Oct69
199926-Jun-
23-Oct75
5
andadultbiomass,weestimatedbiomass-weightedandabundance-weighted
meanlatitudesofoccurrenceforeachlengthbythefollowingformula.
L
bl
=∑B
nl
V
n
L
n
/∑V
n
B
nl
L
al
=∑A
nl
V
n
L
n
/∑V
n
A
nl
where,L
bl
:biomass-weightedmeanlatitudeofalength,l;L
al
:abundance-
weightedmeanlatitudeofalength,l;B:Biomass(ginwetweight)per20-min
tow;A:Abundance(number)per20-mintow;n:station;V
n
:watervolume(m3)of
theregionwherestationnislocated,
∑V=V
lowerbay
+V
middlebay
+V
upperbay
=26.668+16.840+8.664=52.112(x109
m3).
Inanexploratorystep,correlationanalysiswasudtoexamine
relationshipsofbayanchovyspawningandmigrationpatternswithregional-and
depth-layer-specificmeantemperature,meansalinity,theirgradientsor
differencesfromthepreviouscrui,andmonthlymeanstreamflowfromthe
ametersoftemperatureandsalinitywererelatedto
meanlatitudesofoccurrenceandbaywideabundance/biomassforYOYand
adultbayanchovy.
Ontogeneticmigration
AGeneralLinearModel(procGLMinSAS)wasudtoevaluatethe
importanceofenvironmentalfactorsonsize-dependentmigration:
L
ljk
=C
j
+τ
lj
+β
j
x+ε
ljk
where,L:meanlatitudeofoccurrenceforbayanchovyweightedbyabundance
orbiomass;l:length(mm)ofbayanchovy;j:ason(=1,2,3);k:year(=95,96,
97,98,99);C:constantterm;β:slopecoefficient;τ:effectofbody-size;x:values
foreachenvironmentalfactor(salinity,temperature,theirgradient,freshwater
input,etc.);ε:errorterm.
AfterdeterminingthemostimportantfactorfordistributionofYOYand
adultbayanchovy,regressionanalysisbadonquentialsumsofsquares
(typeISS)wasappliedtofittherelationshipbetweenthefactorandlength-
specificmeanlatitudeofdistribution,afterfilteringoutthesize-dependencyby
polynomialequations(procREGandGLMinSAS6.11:SAS,1990;Littelletal.,
1991).Thestatisticalmodelis:
L
jk
(l)=β
0
+β
1
l+β
2
l2+β
3
l3+β
4
x+β
5
(xl)+ε
ljk
(cubic)
where,β
0
:intercept;β
1
,β
2
,β
3
:slopecoefficenitsforthepolynomialequation;l:
totallength(mm)ofbayanchovy;x:valuesfortheenvironmentalfactor;(xl):
interactionterm;β
5
:slopecoefficientfortheinteractionterm;ε:errorterm.
Ifthehighestordertermortheinteractiontermwasnotsignificantatα=
0.05,wefitagainafterremovingthotermsfromthemodelequation,untilall
termsweresignificant.
6
Recruitmentmodels
Totestwhetherthereisasignificantrelationshipbetweenbayanchovy
spawningstockbiomass(SSB)inApril-MayandYOYrecruitmentinOctober,we
ationshipbetweentheasonal
changesinthespatialdistributionpatternofadultbayanchovyandYOY
recruitmentlevelsinOctoberwastestedbyregressionanalysis,afterexamining
thedistributionmapsofYOYandadultbayanchovydistributionforeachcrui.
Finally,twodifferentrecruitmentmodelsweretestedbadonthe
estimatedSSBinApril-Mayandthedifferencesinbiomass-weightedmean
,the
log-transformedYOYrecruitmentlevelinOctoberwasfittedbyastatistical
model:
Log(R
y
)=β
0
+β
1
S+β
2
∆L+ε
y
whereR
y
:recruitmentlevel=OctoberYOYabundanceintheyear,y;Β
0
:
intercept;β
1
andβ
2
:slopecoefficients;∆L:differenceinbiomass-weightedmean
latitudeofSSBindecimalunitsbetweenApril-MayandJune-August;S:baywide
spawningstockbiomass(male+female)intonsforApril-May,orforJune-
August;ε
y
:errorterm.
Thestatisticalmodelfittheobrvedrecruitmentlevelsquitewell,butwas
biologicallyunacceptable,
includeadensity-dependentterm,amodifiedRickermodelwasapplied(Ricker,
1954,1975):
R
y
=aSexp(–β
1
S-β
2
∆L+ε
y
)
log(R
y
)-log(S)=log(a)–β
1
S-β
2
∆L+ε
y
Forthismultivariaterecruitmentmodel,collinearitydiagnostictools
availableinprocREGofSAS,suchasvarianceinflationfactor(VIF)and
conditionindex(CI),nruleofthumbwasadopted:ifVIF>
10orCI>15,collinearitywasjudgedtobeproblematical.
RESULTS
Environmentalfactors
Monthlystreamflow
fromtheSusquehannaRiver
(Table2)showedhighannual
andasonalvariability.
Streamflowswerehighin
1996and1998,andlowin
1995,1997and1999.
almeanstreamflow(m3/s)
PeriodYear719981999
Jan.-Mar.1,2892,4951,4742,5631,325
Apr.-Jun.7281,7029201,625791
Jul.-Sep.238768239334294
Oct.-Dec.9232,23
Annualmean7951,7998451,179763
7
Watertemperatureandsalinityvariedannually,asonally,andregionally
(Table3).Annually,temperaturewashighestin1995,andlowestin1997.
ally,salinitywasmore
ally,temperaturewasmorevariablethan
aturewashighestintheJune-August,thespawningasonof
bayanchovy,tyincread
tywaslowestinApril-Mayinall
fficientofvariation(CV)forannualmeansalinitieswasabout2
timeshigherthanthatfortemperatures.
Trendsinabundanceandrecruitment
of
YOYrecruitmentinOctoberwerelowin1995and1996(6to7X109)buthigher
in1997-1999(19to52X
109).Baywideestimatesof
bayanchovybiomassfor
fish>30mmTLincread
fromApriltoOctober(Fig.2).
Octoberbaywidebiomass
washighestin1998(mean
±SE=38,000±4,100tons),
andlowestin1996
(5,000±1,100tons).
Spawningstock
biomass(SSB),estimated
asthebaywidebiomassin
April-May,waslowestin
1995(663tons),and
highestin1997(4,010tons).
TheSSB,atfirstglance,did
notshowanyapparent
relationshipwithOctober
YOYabundance(Fig.3-a).
TheSSBinJune-August,
estimatedfromage1+bay
anchovybiomass,alsodid
notshowanyobvious
relationshipwithOctober
YOYabundance(Fig.3-b).
mperatures(oC)andsalinities(psu)
integratedoversurfacetobottom,withpooled
standarderrors
PeriodTemperatureSESalinitySE
Cruidate
28-Apr-9514.080.0917.600.41
23-Jul-9528.040.1917.770.46
28-Oct-9517.710.0920.430.38
28-Apr-9613.240.1313.010.39
17-Jul-9624.570.1514.550.56
22-Oct-9616.610.1514.130.42
20-Apr-9710.960.0813.520.64
11-Jul-9725.460.1815.570.47
29-Oct-9715.000.0620.590.35
11-Apr-9812.200.0811.450.46
04-Aug-9825.860.0715.650.40
19-Oct-9819.080.0818.800.42
19-Apr-9912.090.1115.720.45
26-Jun-9923.230.1418.220.48
23-Oct-9916.310.1019.590.46
Year
199519.950.0718.600.24
199618.140.0913.900.26
199717.140.0616.560.28
199819.050.0515.300.25
199917.210.0717.840.27
CV6.6%11.5%
Season
April-May12.520.0514.260.21
June-August25.430.0716.350.22
October16.940.0518.710.19
Region
Lower18.401.4420.940.74
Middle18.291.5214.090.77
Upper17.991.577.170.78
8
Correlations
Correlationcoefficientsof
biomass-weightedmeanlatitudeofYOY
andadultbayanchovydistributionwith
salinity,temperature,andSusquehanna
RiverstreamflowareprovidedinTable
tygradientsdidnotshow
significantcorrelationswiththemean
latitudeofYOYandadultbayanchovy
difficulttointerpretthehighcorrelationcoefficientsbetweenYOYandadultbay
anchovyabundancesinOctoberwithsalinitychangeinthelowerBayfromApril-
MaytoJune-August,butitsuggestedthatOctoberrecruitmentmightbefixedin
theApriltoAugustperiod(Fig.4).Althoughsomevariablesweresignificantly
correlated,wewereunabletodetectanyconsistentpatternswithrespectto
ason,,SSBinApril-Maywasnotsignificantly
correlatedwiththepreviousyear’sYOYrecruitmentlevel,probablybecauof
plecorrelationsalonewerenot
sufficienttotestthehypothesis,becautherewereonly5yearsofobrvations,
andsignificantcorrelationscouldhaveoccurredbychance.
ruitmentofbayanchovyinOctober
plottedonsalinitychangeinthelowerBayfrom
April-MaytoJune-August.
ng
stockbiomassofbayanchovyin
ChesapeakeBay.
eestimateof>30mmTLbayanchovy
biomass(YOY+adult)intons.
0
10,000
20,000
30,000
40,000
50,000
719981999
APR
JUL
OCT
APR
JUL
OCT
APR
JUL
OCT
APR
AUG
OCT
APR
JUN
OCT
0
10000
20000
30000
40000
50000
60000
R
e
c
r
ui
t
s
(
mi
l
l
i
o
n
s
)
i
n
O
c
t
o
b
e
r
5
SSB(tons)inApril-May
95
96
97
98
99
0
10000
20000
30000
40000
50000
60000
R
e
c
r
ui
t
s
(
mi
l
l
i
o
n
s
)
i
n
O
c
t
o
b
e
r
040005000
SSB(tons)inJune-August
95
96
97
98
99
(a)
(b)
0
10
20
30
40
50
60
N
u
m
b
e
r
of
Y
O
Y
i
n
O
c
t
o
b
e
r
(
1
0
9
)
12345
Salinitydifference(psu)
1995
1996
1997
1998
1999
9
ationcoefficientsforbayanchovydistributionandabundancewithtemperature,salinity
iablesthatdidnotshowanysignificantcorrelationatα=
0.05arenotshownhere.
Explanationoftheabbreviationsforvariablenames:
1)Columnvariablenames
Thefirstcharacter:L=meanlatitudeofoccurrenceweightedbybiomass,N=baywideabundance,
B=biomass
Thethirdcharacter:Y=young-of-the-yearbayanchovy.A=age1+bayanchovy
Thefourthandfifthdigit:04=April-May,07=June-August,10=October
2)Rowvariablenames
Thefirstthreecharacters:SAL=salinity,TEM=watertemperature,
D_S=salinitydifferencefromthepreviouscrui,D_T=temperaturedifference
G_S=salinitygradientbetweentworegions,G_T=temperaturegradient
Thefourthandfifthdigit:04=April-May,07=June-August,10=October
Thesixthcharacter:L=lowerBay,M=middleBay,U=upperBay
Thelastcharacter:S=surface,B=bottomlayer
FLOW:monthlymeanstreamflowfromtheSusquehannaRiverfromJanuary(01)toOctober(10)
3)*=Significantatalpha=0.05,**=significantatalpha=0.01
VariableL_Y07L_Y10N_Y07N_Y10L_A04L_A07L_A10B_A04B_A07B_A10
SAL04LS0.860.430.50-0.760.580.720.60-0.07-0.18
-0.88*
SAL04US0.32-0.310.37-0.17
0.91*
0.090.020.120.41-0.36
SAL04UB0.27-0.320.28-0.13
0.93*
0.040.040.150.42-0.33
SAL10MB
-0.89*
0.47-0.710.38
SAL10UB
-0.94**
0.60-0.710.51
TEM04LS0.790.240.86-0.190.160.700.07
-0.93*
-0.66-0.22
TEM04MS0.910.680.65-0.53-0.03
0.93*
0.52-0.78
-0.89*
-0.54
TEM04US0.480.740.16-0.30-0.600.620.44-0.59
-0.92*
-0.19
TEM04LB0.930.35
0.90*
-0.480.350.830.27-0.73-0.55-0.54
TEM04MB
0.98*
0.510.88-0.630.15
0.91*
0.35-0.65-0.60-0.64
TEM07MS0.61-0.13
0.91*
-0.060.33-0.45-0.140.02
TEM07US0.49-0.29
0.92*
-0.040.24-0.490.08-0.02
D_S07LS-0.82-0.71-0.28
0.91*
-0.79-0.820.33
0.99**
D_S07MS-0.93-0.86-0.55
0.88*-0.95*
-0.620.660.81
D_S07LB-0.49-0.59-0.270.14-0.59-0.34
-0.95*
0.08
D_S07MB
-0.98*
-0.48
-0.90*
0.64-0.87-0.260.520.62
D_S10UB
-0.90*
0.62-0.700.58
D_T07MS-0.22-0.650.500.33-0.34
-0.88*
0.520.43
D_T07LB
-0.96*
-0.140.170.13-0.21-0.600.140.38
G_S04US0.800.870.41-0.62-0.35
0.89*
0.62-0.59
-0.93*
-0.55
G_T04UB0.02-0.580.260.14
0.92*
-0.19-0.220.130.56-0.05
G_S07UB
-0.96*
-0.36-0.670.37-0.510.130.400.18
FLOW010.170.53-0.03-0.02-0.730.320.21-0.52-0.790.12
FLOW02-0.65-0.06-0.600.55-0.71-0.47-0.230.00-0.150.67
FLOW03-0.88-0.42-0.470.72-0.62-0.71-0.620.100.210.86
FLOW04-0.450.07-0.560.51-0.51-0.280.00-0.21-0.400.56
FLOW05-0.270.30-0.310.20-0.06-0.03-0.470.38
FLOW06-0.440.150.02-0.02-0.07-0.33-0.080.24
FLOW070.180.420.12-0.010.27-0.02-0.640.18
FLOW080.73-0.360.41-0.17
FLOW090.84-0.460.83-0.43
FLOW10
0.97**
-0.680.79-0.61
10
Ontogeneticmigration
Thelength-specificmeanlatitudesofoccurrenceofbayanchovy,
weightedbytheirabundance,
anchovytendedtomoveupbayandwerelocatedprimarilyupbayuntiltheywere
approximately45mmTL,afterwhichtheybegantomovedownbay(Fig.5).In
April-May,smallage1bayanchovies<60mmTL,apparentlyrecruitedfromthe
previousyear,variedannuallyintheirmeanlatitudeofoccurrenceintheBay,
whereaslarge(>age1)bayanchovyhadrelativelystablelatitudinallocations
nearthelower-middleBayboundary(Fig.5-a).ComparedtoApril-May,age1+
bayanchovyinJune-Augustweremorevariableintheirannualmeanlatitudesof
occurrence,butbothYOYandadultbayanchovytendedtomoveupbay(Fig.5-
b).In1997and1999,whenannualmeantemperatureswerelowest(Table3),
YOYbayanchovyweretoosmalltobesampledbytheMWTinJune-August.
Themeanlatitudesfor30-60mmTLbayanchovyinApril-Mayshowednotonly
additive,butalsointeractive(sizexlatitude)rmean
latitudes(Fig.5-c)indicatedconsistentontogeneticmigrationpatterns,although
thereweresignificantadditive,annualdifferences,butwithoutinteractive
tprobableexplanationisthatYOYbayanchoviestendedto
moveupbay,andbegantomovedownbayatca.45mmTL.
TheSSB,i.e.,spawningstockbiomassofbayanchovy(excludesYOY),
from1995to1999wascenteredbetween37.30’N–38.00’NinApril-July(Fig.6-
a).However,inJune-August1995-1996,theSSBshiftedtowardtheupperBay,
whereasitsmeanlatitudinalpositionshardlydifferedbetweenApril-Mayand
e-AugustlatitudeofSSBwasstronglyand
significantlyrelatedtosurfacetemperatureinthemiddleBayinApril-May(r2=
86%,p=0.0233;Fig.6-b).Theregressionequationis:
Latitude=33.93+0.35T
where,T=Temperaturefor10.5-14.5oC.
Contourplotsofadultabundancewithrespecttosurfacetemperatureand
salinityshowedthatspawnersweremostlydistributedat10-12oCinApril-May
(Fig.7-a).InJuly1995,whenadultsweredistributedovertheentireBay,the
surfacetemperatureexceeded26oCthroughouttheBay,andadultsweremostly
er-leftconcentrationinthe
1996-1999,thespawnerdistributioninJune-Augustcoincidedwiththe24-26oC
temperaturearea(Fig.7-a).In1996,thelowestrecruitmentyear,adultsmoved
farupbayinJuly(Fig.8),probablybecauthe25-26oCtemperaturerange
occurredthere(Fig.7-b).Thus,thelatitudinalrangeofadultswasbroadinJuly-
August1996(Fig.8).Incontrast,inJuly-August1998,the25-26oCtemperatures
occurredonlyinthelowerBay(Fig.7-b),andmostadultsdidnotmovefar
upbaybetweenAprilandJuly-August(Fig.8).Thus,watertemperature,rather
thanthesalinitygradient,maybemoreimportantvariabletodefinelatitudinal
-MaytemperatureinthemiddleBaywashighin
11
1995-1996,butlowin1997-1999,andthelowAprilmid-Baytemperaturewas
associatedwithhigherYOYrecruitmentinOctober.
nce-weightedmeanlatitudeof
occurrenceofbayanchovy,1995-1999.
37.00
38.00
39.00
M
e
a
n
l
at
i
t
u
d
e
3095
TL(mm)
37.00
38.00
39.00
M
e
a
n
l
at
i
t
u
d
e
30
TL(mm)
37.00
38.00
39.00
M
e
a
n
l
at
i
t
u
d
e
306570
TL(mm)
9596979899
(a)April-May
(b)June-August
(c)October
37
38
39
M
e
a
n
l
at
i
t
u
d
e
1
95
96
97
98
99
37.00
38.00
39.00
40.00
9596979899
April-May
June-August
(a)Meanlatitudeofadults
(b)MeanlatitudeofadultsinJune-August
Surfacetemperature(oC)ofthemiddleBayinApril
titudeofoccurrenceofadultbayanchovy.
Theupperverticalbarreprentsmean+STDofJune-
August,andthelowerverticalbarreprentsmean–
STDofApril-May.
12
Forsmall(<60mmTL)orYOYbayanchovy,correlationandregression
analysrevealedthatsalinitygradientswereconsistentlyrelatedtothelength-
specificmeanlatitudesofoccurrenceofbayanchovy(Fig.9).InApril-May,the
length-specificmeanlatitudeweightedbyabundancemovedupbayasthe
salinitygradient(thedifferencebetweenthemiddleandtheupperBaymean
salinity)decread(Fig.9-a).Asbayanchovylengthincread,themean
latitudesofoccurrencedecread,e.g.,largerbayanchoviesgenerallywere
distributedtowardthelowerBay.
Becautherewasstrong
interactionbetweenthesize(x-
axis)andsalinitygradient(y-axis)
inApril-May,lengthdifferences
mostlydisappeared,ifthesalinity
gradientislargerthan
llest
bayanchovyexperiencedthemost
pronouncedsalinitygradienteffect
inApril-May.
InJune-AugustandOctober,
thelength-specificmeanlatitudes
ofoccurrenceofYOYbayanchovy
didnotshowasignificant
interactioneffect(lengthxsalinity
gradient),andthesalinity-gradient
effectwasadditiveforallsize
class(Fig.9-bandc).The
directionofthesalinity-gradient
effectwasoppositeduringthetwo
owsalinity
gradientsinJune-August,YOYbay
anchovydistributionswere
displacedupbay,whereasin
Octoberalowsalinitygradientwas
associatedwithdownbay
ultindicates
thatsteepsalinitygradients
discourageupbayYOYbay
anchovymigrationfromAprilto
August,anddownbaymigration
salinitygradientapparentlywould
inhibitontogeneticmigrationof
smallorYOYbayanchovyin
eitheranupbayordownbay
direction.
ialspawningareasandconditionsin
ChesapeakeBay.(a)adultabundancewithsurface
salinityandtemperature(1995-1999),(b)potential
spawningareabadonsurfacetemperature(24-26
o
C).
10
12
14
16
18
0
50
100
200
300
400
500
600
700
800April-May
SurfaceSalinity(psu)
22
24
26
28
30
S
u
r
f
a
c
e
T
e
m
p
e
r
at
u
r
e
(
C)
0
50
100
200
400
600
800
1,000
1,200
1,400
1,600June-August
July1996August1998
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
July1996
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
August1998
(a)
(b)
13
1996
1998
AdultBiomass
AprilJuly-August
YOYabundance
July-SeptemberOctober
1996
1998
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
0
100
150
200
300
500
1,000
2,500
5,000
7,500
10,000
13,000
-77.00-76.50-76.00-75.50
37.00
37.50
38.00
38.50
39.00
39.50
0
10
50
100
250
500
750
1,000
2,000
4,000
5,000
butionofbayanchovyspawningstockbiomassandYOYrecruitment
in1996and1998,ChesapeakeBay.
14
RecruitmentModels
AlthoughSSBalonewasnotcorrelatedwithrecruitmentlevel,theshiftin
spatialdistributionofadultspawnersbetweenApril-MayandJune-Augustwas
egression
analysisforthestatisticalmodel,thelatitudinalshiftaloneexplained85%of
recruitmentvariabilityfrom1995to1999(Fig.10-a).Theregressionequationis:
Log(R)=10.55–1.49∆L
Where,R:numberofrecruitsinmillions;∆L:differenceinmeanlocationlatitude
ofSSB,[(Julylatitude)–(Aprillatitude)].
WhenaSSBtermwasincluded,theregressionimprovedandexplained
99.5%ofrecruitmentvariability(Fig.10-b).Theequationis:
Log(R)=11.29-0.000285S–1.83∆L
where,S:SSB(male+female)intons.
ThelatitudinalshiftsinSSBstillexplainedmostofrecruitmentvariability(p
<0.0032).AlthoughSSBalonewasnotsignificantlycorrelatedwithrecruitment,
SSBwasstatisticallysignificantinthemodel,iflatitudinalshiftswereheld
constantforthefiveyears(p=0.0180).Thisstatisticalmodelindicatesthat
recruitmentlevelismaximizedwhenSSB=0,anobviouslyunrealisticoutcome
(Fig.11-a).Theunrealisticresultapparentlywasgeneratedbecauthenegative
slopeofSSBimpliesadensity-dependentrecruitmentprocessthatisnot
accountedforbythestatisticalmodel.
Despiteasmalldecreainr2andthepossibilityofcollinearityamong
SSB,latitudinalshift,andrecruitment,themodifiedRickermodelprovidedagood
fittotheYOYrecruitmentdata(r2=98.2%,p=0.0176),withabiologicallyrealistic
result(Fig.11-b).Theequationis:
R=128Sexp(-0.000785S-1.805∆L)
where,R:recruitmentlevels,millionsofYOYinOctober;S:SSB(male+
female,tons)inApril-May.
Thismodelmaximizesrecruitmentlevelwhenbaywiderelativebiomassof
adultsinApril(SSB)isapproximately1,300tons,ifthelatitudinalshift(∆L)is
sheldconstant,themodelmaximizedrecruitmentlevel
when∆L=0,i.e.,iftheSSBdistributionixactlythesamebetweenApril-May
1998,thehighestrecruitmentyear,theestimatedbaywide
adultbiomasswas1,heVIFwasonly1.28<<10
andallCIswerefarsmallerthan15,weassumedthatcollinearitywasnota
includedtheinteractionterm(Sx∆L)andfitthemodelagain,
butwithoutimprovementbecautheinteractiontermwasnotsignificant(p=
0.06).
15
titudeofoccurrenceofsmall
(<60mmTL)orYOYbayanchovy(1995-
1999)withrespecttosalinitygradient
betweentheupperandthemiddleBay.(a)
for<60mmTLbayanchovy,(b)and(c)
forYOYbananchovy.
sionanalysofYOYbayanchovyrecruitment
levelforfiveyearsinChesapeakeBay.R:YOY
recruitmentlevel;∆L:differenceinbiomass-weighted
meanlatitudeofSSBindecimalunitsbetweenApril-May
andJune-August;S:baywidespawningstockbiomass
(male+female)intonsforApril-May.(a)∆Lalone
includedaxplanatoryvariable,(b)∆LandSincluded
axplanatoryvariables.
(a)April-May
(b)June-August
(c)October
8.5
9.0
9.5
10.0
10.5
11.0
l
o
g
(
R
e
c
r
ui
t
m
e
nt
)
i
n
O
c
t
o
b
e
r
0.00.20.40.60.81.01.2
95
96
97
98
99
R-square=85%
(p=0.026)
ΔL
0.0
10.0
20.0
30.0
40.0
50.0
60.0
R
e
c
r
ui
t
s
i
n
O
c
t
o
b
e
r
(
bi
l
l
i
o
n
s
)
9596979899
Year
Obrved
Fit
R-square=99.5%
(p=0.0054)
(a)Log(R)=10.55–1.49ΔL
(b)Log(R)=11.29-0.000285S
–1.83ΔL
R
e
c
r
u
i
t
s
i
n
O
c
t
o
b
e
r
(
1
0
9
)
16
DISCUSSION
Notonlybiologicalinteractions,butalsocomplexoceanographic
ultsdemonstratedthatthere
isastrongspatialcomponentintherecruitmentdynamicsofbayanchovyin
linityandtemperaturedistributionsareimportanttobay
tion,spawningstocksizealsowas
relatedtorecruitmentlevel,ghfish
recruitmentprocesshavebeendifficulttounderstand,thespatially-extensive
TIESprogramhasprovidedvaluableinformationonprocessrelatedtobay
anchovyrecruitment.
Itispossiblethatthe
apparentontogenetic
migrationpatternmighthave
beencaudbyregional
differencesingrowthand
r,itis
difficulttothinkthatthe
smoothconsistencyfrom
1995to1999,and
significantrelationships
betweenmeanlatitudesof
bayanchovydistributionand
salinitygradientandtotal
length(Fig.5and9)could
havebeengeneratedby
spatialdifferencesingrowth
s
possiblethatsmall
variancesinthelocationsof
bayanchovycouldbe
explainedbyregional
variabilityingrowthand
sprobable
thatontogeneticmigrationis
thedominantfeature
determiningspatialand
temporalpatternsin
abundance,biomass,and
productionofbayanchovy
atthemesoscale.
Itisuncertainwhy
YOYbayanchovymigrate
upbaywhilegrowingin
summerandthenbeginto
movetowardthelowerBay
inlatesummerandfall.A
ck-recruitmentmodels.∆L:difference
inbiomass-weightedmeanlatitudeofSSBin
decimalunitsbetweenApril-MayandJune-
August;SSB:baywidespawningstockbiomass
(male+female)intonsforApril-May.∆LandSSB
includedaxplanatoryvariables.
R=Sx128exp(-0.000785S-1.805L)
R-square=98.2%(p=0.0176)
R-square=99.5%(p=0.0054)
(a)Statisticalmodel
(b)Rickermodel
Recruits(109)
Recruits(109)
ΔL
ΔL
17
steepsalinitygradientemstodeterordiminishtheontogeneticmigrationof
etal.(2000),badonotolithmicrochemicalanalysis,
supportedthehypothesisofanupbayontogeneticmigrationbysmallYOY
anchovy(latelarvaeandsmalljuveniles).Adultbayanchovyprobablyisnot
influencedsignificantlybysalinitybarriersintheBay(Houde&Zastrow,1991),
butmayarchforsuitablespawningconditionsinwhichwatertemperatures,
andprobablypreylevels,tbebeneficialforjuvenilebay
anchovytodisperwidelytoexploitfoodresourcesbaywideiftheyarenot
r,whenthey
approachtheadultstage,theymustreturntosuitablespawningareasthatare
definedbysuitabletemperature,salinity,orotherhydrologicalandbiological
encesinphysiologicalandecological
requirementsamonglifestagesofbayanchovymaycontrolthedistinctive
ontogeneticmigrationpatternthathasbeenobrved,althoughlittleinformation
isavailabletotestforsuchdifferences.
AlthoughthemodifiedRickermodelforbayanchovyrecruitmentfitthe
datawell,thenumberofyearsisonlyfive,andthesignificantrelationshipcould
r,webelievethatpossiblestatisticalerrors
areminimalbecaudiagnosticsdidnotindicatesignificantcollinearity.
Moreover,consideringthenumberofstationsavailabletoparameterizethe
valuesofeachvariableintherecruitmentmodels,thebaywideestimatesofbay
anchovyabundanceandbiomassarequiteaccurateandpossiblemeasurement
berofCTDstationswasnear100foreach
crui,andthesurfaceandbottomtemperatureandsalinitywerenotaveraged
badonanarbitraryfixeddepthofpycnocline,butwerecarefullyparatedby
hery-
independentbaywideestimateofabundanceforeachsizeclassofbayanchovy
alsoisbelievedtobeunbiadandaccurate.
Thespawningareaofadultanchovyin1995-1999wascriticalin
hrecruitmentyearshadsimilar
g&Houde
(1999a,b)reportedhighbiomassofadultanchovypredominantlyinthelower
BayinJuneandJuly1993,ahighrecruitmentyear,inagreementwiththe
wetal.(1991)
periodforthelatitudinalshift,∆L,April-MaytoJune-August,mostlycoincided
r,Itisuncertainwhyrecruitmentlevelswere
higherwhenthelatitudinalshiftswerenarrower.
Recentindividual-badmodelssuggestedthatdensity-dependent
processduringearly-lifestagescouldstabilizebayanchovyrecruitments
(Wangetal.,1997;Roetal.,1999;Cowanetal.,1999).Rilling&Houde(1999
a,b)reportedthatmeandensityofeggsandlarvaeinJuly1993washighestin
thelowerBayandlowestintheupperBay,whereascumulativemortalityfrom
eggto18-d-oldlarvalstagewashighestinthelowerBay,andlowestinthe
tion,otherrecruitmentmodelsthatwefit,butforwhich
resultsarenotgiven,consistentlyindicateddensity-dependence(significantβ
1
18
values).Atsmallscalesofveralmeters,consideredbyWangetal(1997)and
Cowanetal.(1999),feedingprocessareimportantandhighanchovy
spawningstockbiomasscouldinducedensity-dependentfoodcompetitionon
abundantfirst-feedinglarvaebecauplanktonicpreyofbayanchovyarefar
smallerthananchovy,andcertainlysubjecttocontrolbysmall-scaleprocess.
Peebletal.(1996)hypothesizedthatbayanchovy’ssize-specificfecundityis
relatedtopreyavailabilityinTampaBay,Florida,andRoetal.(1999)
suggestedthatdensity-dependentgrowthoflarvaeandjuvenileswouldleadto
&Kimbrell(1980)andAlheit
(1987)propodthatcannibalismduringeggandlarvalstagesisresponsiblefor
ifiedRickermodelaccountedforthe
possibledensity-dependence,althoughwedonotknowatwhichstagessuch
density-dependentprocessaremostimportant.
Atfirstglance,theobrvedrelationshipbetweenlatitudinalshiftofbay
anchovySSBdistributionandYOYrecruitmentconflictswiththedensity-
dependenthypothesis,becauexpecteddensity-dependencewouldbemore
vereandrecruitmentwoulddecreaastherangeofthelatitudinalshift
,weobrvedthatrecruitmentincreadastheshiftdecread.
Thiseminglyprecludespreydistributionasaprimaryfactorexplainingthe
relationshipbetweenlatitudinalshiftsinSSBdistributionandYOYrecruitment.
Theconflictmaybeexplainedbyconsideringthespatialscaleof
ionhasbeensuggestedasanimportant
controlleroffishrecruitmentprocessinearly-lifestages(Sisnwine,1984;
Bailey&Houde,1989).Atthemesoscaleof10-100Km,whichcorrespondsto
rangesofthelatitudinalshiftsofadultbayanchovy,distributionofpredatorsmay
beimportantbecaumostpredatorsarelargerthanbayanchovyandcanmove
speculatethatanabundantandspatiallyconcentratedsupplyoflarvaeor
juvenileanchovy,especiallyinthemiddleBay,couldpromoteearly-lifesurvival,
butmoreanalysofanchovy,
theirpredators,andtheirpreyare
required.
TheabundanceofYOY
weakfish(Cynoscionregalis),a
majorpredatorofbayanchovyin
ChesapeakeBay(Hartman&
Brandt,1995),showedan
exponentialsaturation
relationshipwithrespecttoYOY
bayanchovynumber(Fig.12),
andsupported,atleast
circumstantially,thepredator-
spawningareaisnarrow,the
supplyoflarvaeandjuvenilefish
topotentialpredatorsmaybe
0
20
40
60
80
100
120
N
u
m
b
e
r
of
Y
O
Y
W
e
a
k
f
i
s
h
0
NumberofYOYBayAnchovy
95
96
97
98
99
Y=129(1-exp(-0.046X))
ntialsaturationrelationshipbetween
numberofYOYweakfish(x10
6
)andYOYbay
anchovy(x10
9
)inOctober.
19
chanismforsurvivalhasbeensuggestedforinctsand
plants(Gould,1977),inwhichtemporalquence,i.e.,periodsincyclic
spawningactivity,poralquencingalsohasbeen
emphasizedinfishrecruitmentprocess,e.g.,thematch-mismatchhypothesis
(Cushing,1974).Inthecaofbayanchovyrecruitment,however,we
hypothesizethatitisnotthetemporalquence,butthespatialdistributionof
spawnersthatmaybemoreimportantincontrollingrecruitmentthroughpredator
satiation.
Aconceptualmodelforhypothesizedmechanismsofbayanchovy
arize:
1)LowtemperaturesatabaywidescaleinChesapeakeBayduringApril-
Maywillrestrictdistributionofmostadultsduringthependingspawningason
tivelylowtemperaturespersistuntilthe
June-Augustspawningason,temperature-criticalspawningactivitywillbe
confinedtoarelativelysmallareaofthelowerandlower-midBay.
2)Concentratedspawningactivitythatproduceggsandlarvaeinthe
confinedareacouldsatiatepredatorsofbayanchovylarvaeandYOY(spatial
predator-satiationhypothesis).
ptualmodelofthebayanchovyrecruitmentprocessinChesapeake
latitudinalshiftofspawnersixplainedbyverticalpositionsoftheblackboxes.
Horizontalarrowsindicatedensity-compensatoryanddensity-depensatory
lackarrowsindicate
ontogeneticmigrationofYOYbayanchovy.
20
3)Density-dependencesuggestedbythespawningstock-recruitment
relationshipmightbearesultoffeedingconstraints,cannibalism,and
competitionintheearly-larvalstages.
Ultimately,otherhypothesmayexplainbettertherelationshipsbetween
lati
latitudinalshiftsofadultsmighthavebeencontrolledbythesamecommonfactor
astherecruitmentprocess,andtherelationshipmightbetheresultofthe
tillinvestigatingotherpossiblehypothestoexplain
ing
resultsofouranalysandconsideringscalingissues,thedensity-compensatory
processemscertaintoactduringearly-larvalstagesatsmallspatialscales,
whereasthepossibledensity-depensatoryprocesxplainingtheeffectof
latitudinalshiftmightoccurduringthepost-larvalandjuvenilestageatthe
parentthatspatially-explicitprocessoperatingatthe
mesoscale,andaffectingbothadultandYOY,haveimportantimplicationsfor
ureofdensity-dependent
mechanismsandphysicalprocessoperatingatfine-andmesoscalesarestill
poorlyunderstood.
ACKNOWLEDGEMENTS
g,and,,,,D.O’Brien,n,
,,nlopenforassistanceinfieldsurveys.
alScienceFoundationGrantDEB94-12113.
REFERENCES
Able,K.W.;Fahay,M.P.(1998):ThefirstyearinthelifeofestuarinefishesintheMiddleAtlanticBight.
RutgersUniversityPress,NewBrunswick,NewJery.342pages.
Alheit,J.(1987):Eggcannibalismversuggpredation:.5,
467-470.
Bailey,K.M.;Houde,E.D.(1989):Predationoneggsandlarvaeofmarinefishesandtherecruitment
.25,1-83.
Baird,D.;Ulanowicz,R.E.(1989):.
59(4),329-364.
Bhattachara,C.G.(1967):AsimplemethodofresolutionofadistributionintoGaussiancomponents.
Biometrics23,115-135.
ChesapeakeBayProgram(2000):ChesapeakeBay:Introductiontoanecosystem.30p.
Cowan,J.H.;Ro,K.A.;Houde,E.D.;Wang,S.B.;Young,J.(1999):Modelingeffectsofincreadlarval
mortalityonbayanchovypopulationdynamicsinthemesohalineChesapeakeBay:evidencefor
.185,133-146.
Cressie,N.A.C.(1993):-Intersciencepublication,NewYork.
900pages.
Cronin,W.B.(Ed.)(1971):Volumetric,areal,andtidalstatisticsoftheChesapeakebayestuaryandits
ore.15pages.
Cushing,D.H.(1974):Thepossi:
Theearlylifehistoryoffish.(Ed:Blaxter,J.H.)CambridgeUniversityPress,Cambridge,103-111.
Day,J.W.;Hall,C.A.S.;Kemp,W.M.;Yáñez-Arancibia,A.(1989)::Estuarine
Ecology.(Eds:Day,J.W.;Hall,C.A.S.;Yáñez-Arancibia,A.)JohnWiley&Sons,Inc,NewYork,79-
143.
Dory,S.E.;Houde,E.D.;Gamble,J.C.(1996):Cohortabundancesanddailyvariabilityinmortalityofeggs
andyolk-saclarvaeofbayanchovy,Anchoamitchilli,.94,257-267.
Gould,S.J.(1977):,NewYork.
21
Hartman,K.J.;Brandt,S.B.(1995):Predatorydemandandimpactofstripedbass,bluefish,andweakfishin
theChesapeakeBay:.52,1667-1687.
Houde,E.D.;Zastrow,C.E.(1991)::HabitatrequirementsforChesapeakeBayliving
resources.(Eds:Funderburk,S.L.;Mihursky,J.A.;Jordan,S.J.;Riley,D.)LivingResources
Subcommittee,CheapeakeBayProgram,Annapolis,8.1-8.14.
Hunter,J.R.;Kimbrell,C.A.(1980):Eggcannibalisminthenorthernanchovy,.
78,811-816.
Kimura,R.;Secor,D.H.;Houde,E.D.;Piccoli,P.M.(Inpress):Up-estuarydispersalofyoung-of-the-year
bayanchovyAnchoamitchilliintheChesapeakeBay:InferencesfrommicroprobeanalysisofSrin
.
Kimura,R.;Secor,D.H.;Houde,E.D.;Piccoli,P.M.(2000):Migration/dispersalpatternsofYOYbayanchovy
AnchoamitchilliintheChesapeakeBay:Sr:ript
submittedtoICES2000AnnualScienceConference,SessionN.
King,M.(1995):Fisheriesbiology,gNewsBooks,Oxford.341pages.
Littell,R.C.;Freund,R.J.;Spector,P.C.(Eds.)(1991):titute
Inc.,Cary,NorthCarolina.329pages.
Loos,J.J.;Perry,E.S.(1991)::
fishrecruitmentandrearchintheAmerican:
proceedingsofthe13thannualfishconference;21-26May1989,Merida,Mexico.(Ed:Hoyt,R.D.),
65-76.
Luo,J.;Brandt,S.B.(1993):BayanchovyAnchoamitchilliproductionandconsumptioninmid-Chesapeake
Bay.
.98(3),223-236.
Luo,J.;Musick,J.(1991):.
Soc.120,701-710.
MacGregor,J.M.;Houde,E.D.(1996):Onshore-offshorepatternandvariabilityindistributionand
a.
Ser.138,15-25.
Murdy,E.O.;Birdsong,R.S.;Musick,J.A.(1997):onianInstitutePress,
Washington,don.324pages.
Newberger,T.A.;Houde,E.D.(1995):PopulationbiologyofbayanchovyAnchoamitchilliinthemid
.116(1-3),25-37.
Peebles,E.B.;Hall,J.R.;Tolley,S.G.(1996):EggproductionbythebayanchovyAnchoamitchilliinrelation
.131,61-73.
Ricker,W.E.(1954):11,559-623.
Ricker,W.E.(1975):Com.
.191,1-382.
Rilling,G.C.;Houde,E.D.(1999a):Regionalandtemporalvariabilityindistributionandabundanceofbay
anchovy(Anchoamitchilli)eggs,larvae,ies22,
1096-1109.
Rilling,G.C.;Houde,E.D.(1999b):Regionalandtemporalvariabilityingrowthandmortalityofbayanchovy,
Anchoamitchilli,.97,555-569.
Ro,K.A.;Cowan,J.H.;Clark,M.E.;Houde,E.D.;Wang,S.B.(1999):Anindividual-badmodelofbay
.
185,113-132.
SAS(1990):SAS/STATUr'titudeInc.,Cary,NC.
SAS(1998):SAS/STATTechnicalreport:lishing.80
pages.
Sisnwine,M.P.(1984):Whydofishpopulationsvary?In:Exploitationofmarinecommunities.(Ed:May,
R.M.)Springer-Verlad,Berlin,59-94.
Wang,S.B.;Cowan,J.H.;Ro,K.A.;Houde,E.D.(1997):Individual-badmodellingofrecruitment
ol.51
(SupplementA),121-134.
Wang,S.B.;Houde,E.D.(1995):Distribution,relativeabundance,biomassandproductionofbayanchovy
.121,27-38.
Zastrow,C.E.;Houde,E.D.;Morin,L.G.(1991):Spawning,fecundity,hatch-datefrequencyandyoung-of-
.73,
161-171.
本文发布于:2022-11-24 17:53:09,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/13340.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |