Review
Recentfindingsonthephytoremediationofsoilscontaminated
withenvironmentallytoxicheavymetalsandmetalloids
suchaszinc,cadmium,lead,andarnic
a1,dez-Allica2,il3,a3,2&u2,*
1UnidaddeBiofı´sica,CentroMixtoUPV/EHU,Apdo.644,E-48080Bilbao,Spain;2NEIKER,Basque
InstituteofAgriculturalRearchandDevelopment,Berreaga1,E-48160Derio,Spain;3DepartmentofPlant
BiologyandEcology,UniversityoftheBasqueCountry,Apdo.644,E-48080Bilbao,Spain(*authorfor
correspondence:phone:+34-94-403-43-00;fax:+34-94-403-43-10;e-mail:cgarbisu@)
Keywords:metalloids,metals,phytochelatins,phytoextraction,phytoremediation,transgenicplants
Abstract
Duetotheirimmutablenature,ultofhuman
activitiessuchasminingandsmeltingofmetalliferousores,electroplating,gaxhaust,energyandfuel
production,fertilizerandpesticideapplication,etc.,metalpollutionhasbecomeoneofthemostrious
emediation,anemergingcost-effective,non-intrusive,andaesthet-
icallypleasingtechnology,thatustheremarkableabilityofplantstoconcentrateelementsandcom-
poundsfromtheenvironmentandtometabolizevariousmoleculesintheirtissues,appearsverypromising
thisfieldofphytoremediation,theutilizationof
plantstotransportandconcentratemetalsfromthesoilintotheharvestablepartsofrootsandabove-
groundshoots,i.e.,phytoextraction,maybe,atprent,ementof
thecapacityofplantstotolerateandaccumulatemetalsbygeneticengineeringshouldopenupnew
kofunderstandingpertainingtometaluptakeandtranslocation
mechanisms,enhancementamendments,andexternaleffectsofphytoremediationishinderingitsfullscale
tsgreatpotentialasaviablealternativetotraditionalcontaminatedlandremediation
methods,phytoremediationiscurrentlyanexcitingareaofactiverearch.
nmentalmetalpollution
andphytoremediation
Soilpollutionhasrecentlybeenattractingconsid-
erablepublicattentionsincethemagnitudeofthe
probleminoursoilscallsforimmediateaction
(Garbisu&Alkorta2003).Asaresultofhuman
activitiessuchasminingandsmeltingofmetallif-
erous,electroplating,gaxhaust,energyandfuel
production,fertilizerandpesticideapplication,
etc.,metalpollutionhasbecomeoneofthemost
theirimmutablenature,metalsareagroupof
,although
veralmetalsareesntialforbiologicalsystems
andmustbeprentwithinacertainconcentration
range(Garbisu&Alkorta2003),athighconcen-
trations,metalscanactinadeleteriousmannerby
blockingesntialfunctionalgroups,displacing
othermetalions,ormodifyingtheactiveconfor-
mationofbiologicalmolecules(Collins&Stotzky
1989).Metaltoxicityforlivingorganismsinvolves
oxidativeand/orgenotoxicmechanisms(Briat&
Lebrun1999).
Badontheirchemicalandphysicalproper-
ties,threedifferentmolecularmechanismsof
heavymetaltoxicitycanbedistinguished:(i)pro-
ductionofreactivespeciesbyautooxidationand
Fentonreaction(Fe,Cu),(ii)blockingofesntial
functionalgroupsinbiomolecules(Cd,Hg),and
(iii)displacementofesntialmetalionsfrom
biomolecules(Schutzendubel&Polle2002).
ReviewsinEnvironmentalScienceandBio/Technology3:71–90,2004.
ÓdintheNetherlands.
71
Metal-contaminatedsoilsarenotoriouslyhard
ttechnologiesresorttosoil
excavationandeitherlandfillingorsoilwashing
followedbyphysicalorchemicalparationofthe
ghhighlyvariableand
dependentonthecontaminantsofconcern,soil
properties,siteconditions,andsoon,theusually
enormouscostsassociatedwiththeremovalof
metalsfromsoilsbymeansoftraditionalphysi-
cochemicalmethodxplainwhymostcompanies
hefactthat
veryoftenlargeareasareaffectedbyheavymetal
contamination,aremovaliscertainlydifficult.
Therefore,somemethodsaredevelopedtokeep
themetalsinthesoilbutreducetherisksrelatedto
thisprence(e.g.,bydecreasingbioavailabilityby
insituimmobilisationprocess)(Dieltal.
2002).Onewaytofacilitatesuchimmobilisationis
byalteringthephysicochemicalpropertiesofthe
metal-soilcomplexbyintroducingamultipurpo
anion,suchasphosphate,thatenhancesmetal
adsorptionviaanion-inducednegativechargeand
metalprecipitation(Bolanetal.2003a).
Heavymetalscannotbedestroyedbiologically
(no‘‘degradation’’,changeinthenuclearstruc-
tureoftheelement,occurs)butareonlytrans-
formedfromoneoxidationstateororganic
complextoanother(Garbisu&Alkorta2001).
Althoughmicroorganismsthatumetalsaster-
minalelectronacceptorsorreducethemaspart
ofadetoxificationmechanismcanbeudfor
metalremediation(Garbisu&Alkorta1997),
whenconsideringtheremediationofmetal-pol-
lutedsoil,metal-accumulatingplantsoffer
numerousadvantagesovermicrobialprocess
sinceplantscanactuallyextractmetalsfromthe
pollutedsoils,theoreticallyrenderingthemclean
(metal-free)(Garbisu&Alkorta2001;Garbisu
etal.2002).
Phytoremediation,theuofplantstoextract,
quester,and/ordetoxifypollutants,hasbeen
reportedtobeaneffective,non-intrusive,inex-
pensive,aestheticallypleasing,sociallyaccepted
technologytoremediatepollutedsoils(Alkorta&
Garbisu2001;Weberetal.2001;Garbisuetal.
2002).Phytoremediationiswidelyviewedasthe
ecologicallyresponsiblealternativetotheenvi-
ronmentallydestructivephysicalremediation
methodscurrentlypracticed(Meagher2000).The
USphytoremediationmarketixpectedtoex-
pandmorethanten-foldbetween1998and2005,
toover$214million(Evans2002).
Inthelastfewyears,someexcellentreviewshave
beenpublishedfocusingondifferentaspectsof
phytoremediation(Saltetal.1995a,1998;Chaney
etal.1997;Raskinetal.1997;Chaudhryetal.
1998;Wenzeletal.1999;Meagher2000;Navari-
Izzo&Quartacci2001;Lasat2002;McGrathetal.
2002;McGrath&Zhao2003;McIntyre2003;Singh
etal.2003).Inanyca,andincontrasttoitsmany
positiveaspects,phytoremediationdoeshavecer-
taindisadvantagesandlimitations(Table1).
agesandlimitationsofthephytoremediationtechnology
AdvantagesLimitations
Applicabletoawidevarietyofinorganicandorganic
contaminants.
Limitedbydepth(roots)andsolubilityandavailabilityofthe
contaminant.
Reducestheamountofwastegoingtolandfighfasterthannaturalattenuation,itrequireslongtime
periods(veralyears).
Doesnotrequireexpensiveequipmentorhighly
specializedpersonnel.
Restrictedtositeswithlowcontaminantconcentration.
ssoildisturbanceandthe
spreadofcontaminants.
Plantbiomassfromphytoextractionrequiresproperdisposalas
hazardouswaste.
Earlyestimatesofthecostsindicatethatphytoremediation
ischeaperthanconventionalremediationmethods.
lsoloitffectiveness
whendamageoccurstothevegetationfromdiaorpests.
areacheap
andrenewableresource,easilyavailable.
Introductionofinappropriateorinvasiveplantspeciesshouldbe
avoided(non-nativespeciesmayaffectbiodiversity).
Environmentallyfriendly,aestheticallypleasing,socially
accepted,low-techalternative.
Contaminantsmaybetransferredtoanothermedium,the
environment,and/orthefoodchain.
ly,
treesmayreducenoifromindustrialactivities.
Amendmentsandcultivationpracticesmayhavenegative
conquencesoncontaminantmobility.
72
Withinthefieldofphytoremediation,different
categorieshavebeendefinedsuchas,amongothers,
phytoextraction,phytofiltration(rhizofiltration,
blastofiltration),phytostabilization,phytovolatil-
ization,phytodegradation(phytotransformation),
plant-assistedbioremediation(plant-assisteddeg-
radation,plant-aidedinsitubiodegradation,phyt-
ostimulation,enhancedrhizospheredegradation,
rhizodegradation),etc.(Table2).
Plantsforphytoextraction,i.e.,metalremoval
fromsoil,shouldhavethefollowingcharacteris-
tics:(i)toleranttohighlevelsofthemetal,(ii)
accumulatereasonablyhighlevelsofthemetal,
(iii)rapidgrowthrate,(iv)producereasonably
highbiomassinthefield,and(v)profuroot
system(Garbisuetal.2002).
Theideaofusingplantstoremediatemetal
pollutedsoilscamefromthediscoveryof‘‘hyper-
accumulators’’(Table3),definedasplants,often
endemictonaturallymineralizedsoils,thataccu-
mulatehighconcentrationsofmetalsintheirfo-
liage(Baker&Brooks1989;Raskinetal.1997;
Brooks1998).Infact,plantsgrowingonmetal-
liferoussoilscanbegroupedintothreecategories
accordingtoBaker(1981):(i)excluders,where
metalconcentrationsintheshootaremaintained,
uptoacriticalvalue,atalowlevelacrossawide
rangeofsoilconcentration;(ii)accumulators,
wheremetalsareconcentratedinabove-ground
plantpartsfromlowtohighsoilconcentrations;
and(iii)indicators,whereinternalconcentration
reflectxternallevels(McGrathetal.2002).The
criterionfordefiningNihyperaccumulationis
1000lgNig
)1
onadryleafbasis(Brooktal.
1977),whereasforZnandMnthethresholdis
10,000lgg
)1
andforCd100lgCdg
)1
.Finally,
thecriterionforCo,Cu,PbandSehyperaccu-
mulationisalso1,000lgg
)1
inshootdrymatter
(Brooks1998;Bakeretal.2000;McGrathetal.
2002).Ingeneralterms,metalconcentrationsin
hyperaccumulatorsareabout100–1000-foldhigh-
erthanthofoundinnormalplantsgrowingon
soilswithbackgroundmetalconcentrations,and
about10–100-foldhigherthanmostotherplants
growingonmetal-comtaminatedsoils(McGrath
etal.2002).Hyperaccumulatorsarealsocharac-
terizedbyashoot-to-rootmetalconcentration
ratioof>1(i.e.,hyperaccumulatorplantsshowa
highlyefficienttransportofmetalsfromrootsto
shoots),whereasnon-hyperaccumulatorsusually
havehighermetalconcentrationsinrootsthanin
shoots(Baker1981;Gabbriellietal.1990;Homer
riesofphytoremediation
TermDefinition
PhytoextractionTheuofplantstoremovepollutants(mostly,metals)fromsoils.
PhytofiltrationTheuofplantsroots(rhizofiltration)oredlings(blastofiltration)toabsorb
oradsorbpollutants(mostly,metals)fromwater.
PhytostabilizationTheuofplantstoreducethebioavailabilityofpollutantsintheenvironment.
PhytovolatilizationTheuofplantstovolatilizepollutants.
PhytodegradationTheuofplantstodegradeorganicpollutants
Phytotransformation
PhytostimulationTheuofplantrootsinconjunctionwiththeirrhizosphericmicroorganismsto
edrhizospheredegradation
Rhizodegradation
Plant-assistedbioremediation
Plant-asssisteddegradation
Plant-aidedinsitubiodegradation
esofhyperaccumulators
MetalSpecies
Zinc(Zn)escens
Cadmium(Cd)escens
Nickel(Ni)Berkheyacoddii
Selenium(Se)Astragalusracemosa
Thallium(Tl)Iberisintermedia
Copper(Cu)Ipomoeaalpina
Cobalt(Co)Haumaniastrumrobertii
Arnic(As)a
73
etal.1991;Bakeretal.1994a,b;Brownetal.
1995;Krameretal.1996;Shenetal.1997;Zhao
etal.2000;McGrathetal.2002).
Hyperaccumulationofheavymetalionsisin-
deedastrikingphenomenonexhibitedby<0.2%
ofangiosperms(Baker&Whiting2002).Most
recently,aplethoraofpapersarebeingpublished
inanattempttodisctthemechanismsofmetal
uptake,transportandaccumulation,bothatthe
physiologicalandmolecularlevel(Baker&
Whiting2002).The‘‘model’’hyperaccumulator
Thlaspicaerulescenshasbeenmuchscreenedinthe
archfornewandmoreextremeecotypes
(McGrathetal.2001;Lombietal.2002).Our
understandingoftheinternalprocessthatconfer
thehyperaccumulationphenotypeisadvancingin
leapsandbounds,andthemechanismsoftrans-
port,toleranceandquestrationinsomespecies,
atleastinthegeneraThlaspiandAlyssum,are
partiallyelucidated(Lasat2002).
Treeshavealsobeenconsideredforphyto-
remediationofheavymetal-contaminatedland,
withwillowandpoplarbeingpromisingcandi-
dates,amongothers,inthisrespect(Pulford&
Watson2003).Accordingtosomeauthors,trees
potentiallyarethelowest-costplanttypetoufor
phytoremediation(Stompetal.1994).Manytrees
cangrowonlandofmarginalquality,havemas-
siverootsystems,andtheirabove-groundbiomass
canbeharvestedwithsubquentresprouting
withoutdisturbanceofthesite(Stompetal.1994).
Followingtheharvestofmetal-enrichedplants,
theweightandvolumeofthecontaminated
materialcanbefurtherreducedbyashingor
composting(Garbisu&Alkorta2001;Garbisu
etal.2002).Metal-enrichedplantscanbedispod
ofashazardousmaterialor,ifeconomicallyfea-
sible,udformetalrecovery(Saltetal.1998).
Recently,somestudieshavereportedontheutili-
zationofpyrolysistoparateheavymetalsfrom
hyperaccumulators(Koppolu&Clements2003).
Althoughplantsacquireesntialmineralssuch
asFe,Cu,Ni,ZnandSefromthesoil,forreasons
thatarenotyetclear,theyalsohavetheabilityto
acquireanddetoxifynon-esntialelementssuch
asAs,Cd,CrandPb(Saltetal.2002).Certain
themesinthephysiologyandbiochemistryoftrace
elementaccumulationbyplantsappearcommon
(Saltetal.2002).
Mostphytoremediationstudieshaveconsid-
eredmetalextractionefficiencyinrelationtometal
concentrationofbulksoilsamplesormetalcon-
centrationofthesoilsolution,butlittleisknown
abouttheeffectofvariousmetal-bearingsolidson
,it
hasbeenshownthatitisntialtoconsiderthe
natureofthemetal-bearingsolidstobetterpredict
theefficiencyofplantextraction(Dahmani-Muller
etal.2001).Besides,itisalsoimportanttocon-
siderthatmetalbioavailabilitychangesbetween
thebulksoilandtherhizosphere,thelatterbeinga
microbiospherewhichhasquitedifferentchemical,
physicalandbiologicalpropertiesfrombulksoils
(Wangetal.2002b).Inthisrespect,recently,ithas
beenreportedthatrootgrowthisamorensitive
endpointofmetalavailabilitythanchlorophyll
assays(Morganetal.2002).Inordertoimprove
phytoremediationofheavymetalpollutedsites,
thespeciationandbioavailabilityofthemetalsin
thesoil,theroleofplant-associatedsoilmicroor-
ganismsandfungiinphytoremediation,andthat
ofplantshavetobeelucidated(Kamnev&vander
Lelie2000).
Phytoremediationhasbeenudinminedsoil
restoration,sincethesoilsaresourcesofairand
waterpollution,bymeansofphytostabilization
andphytoextractiontechniquestostabilizetoxic
minespoilsandremovetoxicmetalsfromthe
spoils,respectively(Wong2003).
Somehigherplantspecieshavedeveloped
heavymetaltolerancestrategieswhichenablethem
tosurviveandreproduceinhighly-metalcontam-
i-Mulleretal.(2000)inves-
tigatedmetaluptakeandaccumulationstrategies
oftwoabsolutemetallophytespeciesandone
ormertwospecies,
realhyperaccumulationintheleavesaswellas
metalimmobilisationinrootsand/oradetoxifi-
cationmechanismbyleaffallwerefoundas
possiblestrategiestodealwiththehighmetal
rast,thestrategyofthe
pudometallophyte,i.e.,Agrostistenuis,pre-
ntedasignificantmetalimmobilisationbythe
roots.
Mostplantshavemycorrhizalfungiassociated
withthem,providingtheirhostswithanincread
capacitytoabsorbwaterandnutrientsfromthe
mationandfunctionofmycorrhizal
relationshipsareaffectedbyanthropogenic
stressorsincludingmetals(Entryetal.2002).
Arbuscularmycorrhizalfungiareofinterest
fortheirreportedrolesinalleviationofdiver
74
soil-associatedplantstressors,includingthoin-
ducedbymetals,soithasbeenclaimedthatthe
evaluationoftheefficacyofplant-mycorrhizal
associationstoremediatemetal-pollutedsoilsde-
rvesincreadattention(Entryetal.2002).In
addition,phytoextractionpractices,e.g.,the
choiceofplantspeciesandsoilamendments,may
haveagreatinfluenceonthequantityandspecies
compositionofglomaleanpropagulesaswellason
arbuscularmycorrhizalfungifunctioningduring
long-termmetal-remediationtreatments(Paw-
lowskaetal.2000).
Auniquetestingsystem,thetarget-neighbour
method,hasbeendescribedtoallowevaluationof
howplantingdensityinfluencesmetaluptake,so
thattheinformationneededtomanipulateplant
densityforoptimizationofmetalremovalcouldbe
obtained(Shann1995).
Finally,mostrecently,phytoremediationhas
beencombinedwithelectrokineticremediation,
applyingaconstantvoltageof30Vacrossthesoil,
concludingthatthecombinationofbothtech-
niquesreprentsaverypromisingapproachto
thedecontaminationofmetalpollutedsoils
(O0Connoretal.2003).
findingsonthephytoextractionofsome
ofthemostrelevantenvironmentallytoxicheavy
metals(zinc,cadmium,lead)andmetalloids
(arnic)
Thisctionisdividedintofourdifferentsub-
firstthreecorrespondtothreeofthe
mostenvironmentallyrelevantheavymetals,i.e.,
Zn,Cd,rthsub-headingdealswith
As,portant
toemphasizeherethatveryofteninformation
regardingonemetalappearsunderadifferent,
apparentlywrong,anyofthe
reviewedpublicationsdealwithmorethanone
metalatthesametime,ithasbeenpreferredto
prentthemaspartofthesamerearch,despite
thefactthatctionstructurecouldnotbemain-
tainedasdesired.
ZincandCdareubiquitouspollutantsthattendto
Znisoftenphytotoxic,Cdrarelyinhibitsplant
escens,anintegratedmolecular
andphysiologicalinvestigationofthefundamental
mechanismsofheavymetalaccumulationwas
conducted(Penceetal.2000).Ametaltransporter
cDNA,znt1(expresdatveryhighlevelsinroots
andshootsofthisplant),wasclonedfrom
escensthroughfunctionalcomplementa-
tioninyeastandwasshowntomediatehigh-
affinityZnuptakeaswellaslowaffinityCd
tionintheregulationofznt1gene
expressionbyplantZnstatusresultsintheover-
expressionofthistransporterandinincreadZn
influxinroots,evenwhenintracellularZnlevels
,specificalterationsinZn-respon-
siveelements(e.g.,transcriptionalactivators)
possiblyplayanimportantroleinZnhyperaccu-
escens(Penceetal.2000).In
thisrespect,Lasatetal.(1998)foundthattheen-
es-
censwas,atleastpartly,achievedthroughan
alteredZncompartmentationintherootsym-
plasm,whichreducesZnquestrationinroot
erstepatelucidatingthemech-
anismsunderlyingZnhyperaccumulationwasgi-
venthankstothecloningofmetaltransporter
genencodingputativevacuolariontransport
escens(Assuncaoetal.2001).
Cd
Ni
Zn
Pb
As
Cu
CoTl
Rootuptake
Translocation
Accumulation
Harvesting
Disposal/Recovery
xtractionofmetals.
75
Infact,ZTP1(atransporterbelongingtothecat-
ion-effluxfamily)hasbeenfoundtobehighlyex-
escens,predominantlyinleaves
(Assuncaoetal.2001).
Longetal.(2002)haverecentlydescribeda
largebiomassZnhyperaccumulatingplant,i.e.,
rly,Wangetal.(2003)have
reportedonthediscoveryoftwonewplantswith
potentialforphytoremediationofZn-polluted
soils,i.e.,PolygonumhydropiperandRumexace-
amestudy,theauthorsindicatethat
theconsumptionofricegrowninpaddysoils
contaminatedwithCd,CrorZnmaypoa
riousrisktohumanhealth,becaufrom22to
24%ofthetotalmetalcontentinthericebiomass
stingly,
Platanusacerifoliagrowingonheavilycontami-
natedsoilaccumulatedonlyverylowlevelsof
heavymetals,andthismechanismforexcluding
metaluptakemayhavevalueincropimprovement
(Wangetal.2003).
pestoleranttoZn
toxicityemtogrowbetterthanZn-nsitive
genotypes,eveninZn-deficientsoil,becauof
theirgreatercapacityfortakingupZnfromZn-
deficientsoil,revealingthecoexistenceoftraitsfor
tolerancetoZntoxicityandZndeficiencyina
singleplantgenotype(Rengel2000).
MetalresponsinthemetallophyteArabidop-
sishalleri,aclorelativetothemodelplant
na,thatisCdhypertolerantandZnhy-
peraccumulating,havebeenstudied,andmetal-
regulatedgenesisolatedandmolecularlyanalyzed
asinterestingcandidategenesforphytoremedia-
tion(Bertetal.2000;Dahmani-Mulleretal.2000;
Clemens2001;Macnair2002).UnlikeThlaspi,
iemstobelargelyallogamous,eds
profulyoveralongergrowingasonandcan
alsospreadvegetativelybystolons(Baker&
Whiting2002).Macnair(2002)demonstratedthat
theheritabilityofZnaccumulationwasbetween
25and50%,thehighestyetrecordedforanyhy-
peraccumulator,probablybecauoftheout-
uingly,the
i
wasmanifestedmorewhengrowninlow-Znmedia
thaninhigh(Baker&Whiting2002).
beendeveloped,andthismighthelpinthelection
andcharacterizationofheavymetaltolerancein
plantsforbreedingprogrammes(Routetal.1999).
InapaperfocusingonsoilsolutionZnandpH
-
rulescensJ.&,dataindicatethatthepo-
tentialofthishyperaccumulatortoremoveZn
fromcontaminatedsoilmaynotberelatedeither
toacidificationoftherhizosphere(McGrathetal.
1997;Luoetal.2000)ortoexudationofspecific
metal-mobilizingcompounds(Zhaoetal.2001).
Intriguinglyenough,somestudieshaveprovided
escens
areabletonandactivelyforageintheZnrich
patchesinsoil(Schwartzetal.1999;Whitingetal.
2000).
Amodifiedglassbeadcompartmentcultiva-
tionsystemforstudiesonnutrientandtrace
metaluptakebyarbuscularmycorrhizausingtwo
hostplantspecies,maize(ZeamaysL.)andred
clover(TrifoliumpratenL.),andtwoarbuscu-
larmycorrhizalfungi,GlomusmossaeandG.
versiforme,foundastriking,veryhighaffinityof
thefungalmyceliumforZn,suggestingthepo-
tentialuofarbuscularmycorrhizainthephy-
toremediationofZn-pollutedsoils(Chenetal.
2001).
m
Cadmiumisoneofthemoremobileheavymetals
inthesoil-plantsystem,easilytakenupbyplants
andwithnoesntialfunctionknowntodate
(Lehoczkyetal.2000).Thilementcanaccumu-
lateinplantswithoutcausingtoxicitysymptoms
(Lehoczkyetal.1998).
Insoybeanplants,resultsrevealthatthecon-
tentofCdindifferentpartsoftheplantswas
roots>>stems>eds,indicatingthattheaccu-
mulationofCdbyrootsismuchlargerthanthat
ofanyotherpartofthesoybeanplant,andmight
caudeleteriouffectstorootsystems(i.e.,de-
creadnodulation,changesintheultrastructure
ofrootnodule,etc.)(Chenetal.2003).
Ithasbeensuggestedthatvetivergrasscouldbe
udtoremediateCd-pollutedsoil,sinceitaccu-
mulated218gCdha
)1
atasoilCdconcentration
of0.33mgCdkg
)1
(Chenetal.2000).Although
questrationofCdbyrhizospheremicroorgan-
ismsmayhaveanimportantinfluenceonplantCd
uptake,furtherrearchisstillrequiredtoestab-
lishwhethertheaccumulationofCdby
rhizobacteriainhibits,oraccelerates,Cduptakeby
thehostplant(Robinsonetal.2001).
76
Recentworkshaveaimedtoidentifytheroleof
antioxidativemetabolisminheavymetaltolerance
escens(Boominathan&Doran2003a,
b).Hairyrootswereudtotesttheeffectsofhigh
Cdenvironments,demonstratingthatmetal-in-
ducedoxidativestressoccursinhyperaccumulator
tissueventhoughgrowthisunaffectedbythe
orantioxidant
defens,particularlycatalaactivity,mayplay
animportantroleinthehyperaccumulatorphe-
escens.
Phragmitesaustralisplantswereexpodtoa
highconcentrationofCd,findingoutthatmostof
thilementaccumulatedinroots,followedby
leaves(Iannellietal.2002).Inrootsfrom
Cd-treatedplants,boththehighamountof
glutathioneandtheparallelincreaofglutathione-
S-transferaactivityemedtobeassociatedwith
aninductionofthedetoxificationprocessin
xide
dismuta,ascorbateperoxida,glutathione
reductaandcatalaactivitiesaswellasreduced
andoxidizedglutathionecontentsinallsamplesof
leaves,rootsandstolonswereincreadinthe
ethefactthatCdhasaredox
characteristicnotcompatiblewiththeFenton-type
chemistrythatproducesactiveoxygenspecies,Cd
toleranceinPhragmitesplantsmightbeassociated
totheefficiencyofthemechanisms.
TheeffectofFestatusontheuptakeofCdand
escens,i.e.,Gan-
gesandPrayon(theformerbeingfarsuperiorin
Cduptake)wasstudied(Lombietal.2002).
Moreover,escenszip(Zn-regulated
transporter/Fe-regulatedtransporter-likeprotein)
genes,TcZNT1-GandTcIRT1-G,werecloned
fromGangesandtheirexpressionunderFe-suf-
ficientand-defi-
miumuptakewassignificantlyenhancedbyFe
deficiencyinGanges,whileZnuptakewasnot
influencedbytheFestatusoftheplantsineither
esultsareinagreement
withthegeneexpressionstudy,sincetheabun-
danceofZNT1-GmRNAwasalwayssimilar,
independentlyoftheFestatusorecotype,while
thatofTcIRT1-GmRNAwasgreatlyincread
onlyinGangesroottissueunderFe-deficient
conditions,suggestingapossiblerelationshipwith
anup-regulationintheexpressionofgenes
encodingFeuptake,possiblyTcIRT1-G(Lombi
etal.2002).
Recently,Songetal.(2003)reportedonthe
utilityoftheyeastproteinYCF1,aproteinwhich
detoxifiesCdbytransportingitintovacuoles,for
theremediationofCdandPbcontamination,
findingoutthattransgenicArabidopsisthaliana
plantsoverexpressingYCF1showedenhanced
toleranceandaccumulatedgreateramountsofCd
stinglyenough,Lahneretal.(2003)
analyzedveralesntialandnonesntialele-
na
plants,demonstratingtheutilityofgenomicscale
profilingofnutrientsandtraceelementsasa
runderstanding
ofhowplantshandlemineralelementshasthe
potentialofyieldingnewphytoremediationcapa-
bilities(Rea,2003).
WhileCddetoxificationiscertainlyacomplex
phenomenon,probablyunderpolygeniccontrol,
Cdrealtolerancefoundinmineplantsemstobe
asimplerphenomenon,possiblyinvolvingonly
monogenic/oligogeniccontrol(SanitadiToppi&
Gabbrielli1999).Theauthorsconcludedthat
adaptivetoleranceissupportedbyconstitutive
detoxificationmechanisms,whichinturnrelyon
constitutivehomeostaticprocess.
Symmetricandasymmetricsomatichybridiza-
tionshavebeenudtointroducetoxicmetal-
escensintoBrassica
juncea(Dushenkovetal.2002).hypo-
escens
mesophyllprotoplasts,andallputativehybrids
.
Hybridplants,producedbyasymmetricsomatic
hybridizationbetweenthetwospecies,demon-
stratedhighmetalaccumulationpotential,toler-
ancetotoxicmetals,andgoodbiomass
a,isbyitlfa
goodcandidateforefficientphytoextractionof
heavymetals-suchasCd-frompollutedsoils
(Schneideretal.1999).
Twoyearsafterthetoxicspillcaudbythe
failureofatailingponddamattheAznalcollar
pyritemine(SWSpain)in1998,noneofthetrace
elementsmeasured-As,Cd,Cu,Pb,Tl-reached
levelitherphytotoxicortoxicforhumansor
animalsinedsandtheabove-groundpartof
spill-affectedsunflowerplants(Madejonetal.
2003).However,thepotentialforphytoextraction
oftheplantsisverylow,thoughtheymightbe
ductionofoil
(usableforindustrialpurpos,whoproduction
77
wasgreaterinthespill-affectedplantsascompared
withunaffectedsunflowerplantsgrowinginadja-
centsoil)mayaddsomevaluetothiscrop
(Madejonetal.2003).
Fieldandglasshouinvestigationswerecon-
ductedoftheresponsontwolegumes(fieldpea
andfoddervetch)andthreenon-leguminouscrops
(maize,wheatandrapeed)totheheavymetals
Cd,Cr,Zn,Pb,CuandMninsoilwithmultiple
metalcontamination(Wangetal.2002a).Among
thecrops,maizehadthehighestconcentrationsof
Mn,ZnandCd,whilewheatwasthehighest
wasaccumulatedin
thegrainofwheatthanofmaize,suggestingthat
growingwheatwouldreprentahigherriskof
foodcontaminationthangrowingmaizein
oncludedthatmaize
couldperhapsbeudforphytoremediationof
lightlycontaminatedsoils(Wangetal.2002a).
y
metalsmakesitagoodprospectforreclamation
projects(Jauertetal.2002).Intheplants,there
emstobeanegativecorrelationbetweenrhizo-
spherepHandCduptake.
Mejare&Bulow(2001)reviewedthemetal-
bindingproteinsandpeptidesinbioremediation
bymicroorganismsandphytoremediationofhea-
vymetals,withspecialemphasisonCd,indicating
thattheexpressionofthemoleculestoenhance
heavymetalaccumulationand/ortolerancehas
greatpotential.
Toaugmenthigherplantmetalquestration,
theyeastmetallothioneinCUP1(metallothioneins
aremetal-bindingproteinsthatconferheavymetal
toleranceandaccumulation)wasintroducedinto
tobaccoplants,andthecup1geneexpressionand
CuandCdphytoextractionweredetermined
(Thomatal.2003).Althoughpooledleavesof
transgenicplantscontainedtwotothreetimesthe
Cucontentasthatofthecontrolplants,CUP1
edlingdidnotsignificantlyquesterordemon-
stratetolerancetoCd.
Phytosiderophores,Fechelatorxcretedby
graminaceousplantsunderconditionsofFelimi-
tation,mhasbeen
showntoincreatherateofphytosiderophore2¢-
deoxymugineicacidreleainmaizeunderboth
Fe-sufficientandFe-limitingconditions(Hilletal.
2002).Collectively,resultsindicatedthatCdstress
causFedeficiencysymptomsthatresultin
greater2¢-deoxymugineicacidproductionby
maizeroots,andthenthe2¢-deoxymugineicacid
appearstoreduceCdaccumulation.
HairyrootswereudtoinvestigateCduptake
escens,findingoutthattheaccumula-
tionofthilementincreadaftertreatingthe
rootswithH(+)-ATPainhibitor(Nedelkoska&
Doran2000).MeasurementofCdlevelsrevealed
significantdiff-
rulescensandNicotianatabacum:mostmetalwas
-
bacumrootswithin3daysofexposure,while,in
contrast,escensrootsstoredvirtuallyall
oftheirCdinthecellwallfractionforthefirst7to
layintransmembraneuptakemay
reprentanimportantdefensivestrategyagainst
Cdpoisoning,allowingtimeforactivationof
intracellularmechanismsforheavymetaldetoxi-
fication(Nedelkoska&Doran2000).Inthis
respect,itshouldbenotedthat,duetotheirfast
growthratesandbiochemicalstability,‘hairyroot’
culturesremainunsurpasdasthechoicefor
modelrootsystemswithawiderangeofapplica-
tions,includingasamodelforphytoremediation
(Shanks&Morgan1999).
HairyrootsoftheCdhyperaccumulator
escenshavebeenshowntocontainhigh
constitutivelevelsofcitric,malicandmalonic
acids(Boominathan&Doran2003a,b).-
rulescenshairyrootsremainedhealthyandgrew
wellathighCdconcentrations,withmostofthe
of
escenshairyrootswasverelyreducedin
theprenceofdiethylstilbestrol,aninhibitorof
plasmamembraneH+-entwith
diethylstilbestrolincreadtheconcentrationof
escensabout6-fold
esultssug-
gestthatthemechanismsofCdtoleranceand
escenshairyroots
arecapableofwithstandingtheeffectsofplasma
membranedepolarization(Boominathan&Doran
2003a,b).
Cadmiumcausatransientdepletionofglu-
thathioneandaninhibitionofantioxidativeen-
zymes,especiallyofglutathionereducta
(Schutzendubel&Polle2002).Thedepletionof
glutathioneisapparentlyacriticalstepinCd
nsitivity,andthereareindicationsthatCd,when
notdetoxifiedrapidlyenough,maytriggera
quenceofreactionsleadingtogrowthinhibition,
stimulationofcondarymetabolism,lignification
78
and,finally,celldeath,incontrasttotheideathat
Cdresultsinunspecificnecrosis(Schutzendubel&
Polle2002).Mycorrhizationstimulatesthephe-
nolicdefencesysteminthePaxillus-Pinusmycor-
rhizalsymbiosis,butitisstillnotknownwhether
mycorrhizationprotectsrootsfromCd-induced
injurybypreventingaccessofCdtonsitiveex-
tra-orintracellularsites,orbyexcretedorintrinsic
metal-chelators,orbyanyotherdefencesystem
(Schutzendubel&Polle2002).Thus,thedevelop-
mentofstress-tolerantplant-mycorrhizalassocia-
tionsmaybeapromisingnewstrategyfor
phytoremediation.
Tobetterexaminethephytoremediationof
transgenicIndianmustard()plants,
overproducingtheenzymesgamma-glutamylcy-
steinesynthetaorglutathionesyntheta(which
haveincreadlevelsofthemetal-bindingthiol
peptidesphytochelatinsandglutathione,anden-
hancedCdtoleranceandaccumulation),and
overexpressingadenosinetriphosphatesulfuryla
(showntohavehigherlevelsofglutathioneand
totalthiols),agreenhouexperimentwascon-
ductedinwhichthetransgenicsweregrownon
metal-contaminatedsoilcollectedfromaUSEPA
Superfundsite(Bennettetal.2003).Alltrans-
genicsremovesignificantlymoremetalfromthe
soilcomparedwithwild-typeIndianmustard,
confirmingtheimportanceofmetal-bindingpep-
udyis
thefirsttodemonstrateenhancedphytoextraction
potentialoftransgenicplantsusingpollutedenvi-
ronmentalsoil.
Previously,Indianmustardhadbeengeneti-
callyengineeredtooverexpresstheEscherichiacoli
gshIgeneencodinggamma-glutamylcysteinesyn-
theta,targetedtotheplastids,obtaininged-
lingswithincreadtolerancetoCdandhigher
concentrationsofphytochelatins,gamma-GluCys,
glutathione,andtotalnon-proteinthiolscom-
paredwithwild-typeedlings(Zhuetal.1999b).
IntheprenceofCd,glutathionesynthetais
ratelimitingforthebiosynthesisofphytochelatins
andglutathione(theirprecursor)(Zhuetal.
1999a).
InordertostudythenatureofCdbindingin
phytochelatinsandrelatedcysteine-richpoly-
peptidesinmaize(),Pickeringetal.
(1999)udX-rayabsorptionspectroscopyto
revealapredominantlytetrahedralcoordination
ofCdbysulfurinthomolecules,suggesting
theprenceofapolynuclearCdclusterinmaize
phytochelatin.
TheeffectofCa(OH)
2
additiononimmobili-
zationandphytoavailabilityofCdfromsoilswas
plants(Bolanetal.
2003b).TheadditionofCa(OH)
2
increassoil
pH,therebyincreasingtheadsorptionofCd,and
effhere
isnodirectevidenceforCdCO
3
orCd(OH)
2
pre-
cipitationinthevariablechargesoiludforthe
plantgrowthexperiment,alleviationofphytotox-
icityisattributedprimarilytoimmobilizationof
CdbyenhancedpH-inducedincreasinnegative
charge.
nageneencodingphytochelatin
syntha(AtPCS),
obrvingamarkedaccumulationofphytochela-
tinswithaconcomitantdecreainglutathione
cellularcontent(Sauge-Merleetal.2003).When
thebacterialcellxpressingAtPCSareplacedin
theprenceofCdorAs,cellularmetalcontents
aresignifiensupthe
possibilityofusinggenesfromthephytochelatin
biosyntheticpathwaytodesignbacteria(bio-
remediation)orhigherplants(phytoremediation)
withincreadabilitiestoaccumulatetoxicmetals.
Bymakinguofnuclearmicroscopytechniques,
suchasmicro-PIXE,ithasbeenobrvedthatCd
isquesteredwithinthetrichomesontheleaf
na(Ageretal.2002).
Usingthec-glutamylcysteinesynthetainhib-
itor,L-buthionine-[S,R]-sulphoximine(BSO),the
roleforphytochelatinswavaluatedinCu,Cd,
Zn,As,Ni,andCotoleranceinnon-metallicolous
andmetallicoloushypertolerantpopulationsof
Silenevulgaris,escens,sand
Agrostiscastelana(Schatetal.2002).Phytochela-
tin-badquestrationemstobeesntialfor
constitutivetolerancebutnotforhypertolerance
mnsitivityisconsider-
ablyincreadbyBSO(aninhibitorofphyto-
chelatinsynthesis),althoughexclusivelyinplants
lackingCdhypertolerance,suggestingthatadap-
tativeCdhypertoleranceisnotdependenton
phytochelatin-mediatedquestration(Schatetal.
2002).
Phytochelatin-badCdquestrationisgen-
erallyconsideredesntialforconstitutiveCdtol-
eranceinorganismswithfunctionalPCSgenes
(Cobbett&Goldsbrough2002;Schatetal.2002).
TheroleofPCsinCddetoxificationwas
79
supportedbytheisolationoftwomutantsof
Arabidopsis,cad1andcad2(deficientinPCand
GSHbiosynthesis,respectively),whichweremore
nsitivetoCd(Cobbetetal.1998).Similarly,a
strongCd-inducedPCaccumulationhasbeen
obrvedinbothnon-tolerantThlaspispecies
(e)(Ebbtal.2002)andnon-tolerant
escens(Schatetal.2002).
Furthermore,Saltetal.(1995b)foundenough
PCstochelatealltheCdintherootsofCd-treated
uthorsconsistentlyfound
themajorityofCdboundtoSligands,witha
probableCd-S
4
coordination,andabondlength
coincidentwiththatofthepurifiedCd-PCcom-
gCd-inducedPCaccumulationhas
escenco-
types(i.e.,Prayon)(Ebbtal.2002)aswellasin
aCd-tolerantecotypeisolatedfromcalaminesoils
(Schatetal.2002).However,thecomparisonbe-
tweennon-tolerantandCd-tolerantecotypesled
totheconclusionthatPCscanonlyplayacrucial
roleforCddetoxificationinnon-tolerantecotypes
(Ebbtal.2002;Schatetal.2002).Twomain
argumentssustainthisconclusion:(i)atequalor
higherrootorshootCdinternalconcentration,
PCsaccumulationislowerinthemoretolerant
hyperacumulatorecotype(themoretolerantthe
ecotype,thelowerPC-SHtoCdmolarratio);and
(ii)theBSOimpodhypernsitivitytoCdin
non-tolerantecotypewasnotapparentinthetol-
erantecotype,irrespectivetothelevelofCd
findings,regardingthelackofa
signifiescensCdhy-
peraccumulatorecotypes,areconsistentwiththo
is
(DeKnechtetal.1994).
TranslocationofCdinthexylemsapappears
tobedrivenbytranspirationfromtheleavesand
tobeindependentofPCproduction(Saltetal.
1995b).Complexationwithlowmolecularweight
organicligands,suchascitrateandhistidine,
m
K-edgeEXAFSofxylemsapisolatedfromB.
junceaplantxpodto0.6mgCdml
)1
for
7daysshowedCdinteractionswithNorO,with
bondlengthsdifferenttothatofCd-PC(Saltetal.
1999).However,veryrecently,Gongetal.(2003)
havefoundthefirstevidenceoflong-distanceroot-
obrvedthatthetransgenicexpressionofwheat
TaPCS1inrootsofcad1-3mutantsofArabidopsis
supresdCdnsitivity,reducedCdaccumulation
inroots,and,mostinterestingly,ledtoPCaccu-
rmore,
Gongetal.(2003)foundaBSOimpodroot-to-
shoottransportinhibitioninTaPCS1transgenic
ementioned,
shootcellularquestrationthroughvacuolar
compartimentationappearstobeakeycompo-
nentinZndetoxifiescens,and
thesamemayholdtrueforCddetoxification
(Ebbtal.2002;Schatetal.2002).Tolerant
escensmayquesterCdin
leafcellsmoreefficiently,eitherviatonoplast
transportersforPCand/oraCd-PCcomplex
(Ebbtal.2002).
AType1metallothioneingenemcMT1was
clonedfromtheCuinducedcDNAlibraryof
andbymeansoffunc-
tionalcomplementationstudiesusingSaccharo-
mycescerevisiaecup1mutantABDE-1(metal
nsitive),thefunctionalnatureofthismcMT1
geneinquesteringbothesntial(Cu,Zn)and
non-esntialmetals(Cd,Pb,Cr)wasconfirmed
(Maetal.2003).
Itisinterestingtonotethatphytochelatin
synthaisnotonlyrestrictedtoplantsandsome
fungi,aswasoncethought,butalsohasan
esntialroleinheavy-metaldetoxificationinthe
modelnematodeCaenorhabditilegans,sonow
phytochelatins,thopost-translationallysynthe-
sizedpeptides,willalsobeinvestigatedfroma
clinicalparasitologicalstandpoint(Vatamaniuk
etal.2002).
Earlytranscriptionalresponsofacellwall-
deficientmutantofChlamydomonasreinhardtiito
heavymetalstresshavebeeninvestigated,identi-
fying,quencingandquantifyingtheinductionof
anumberoftranscriptsthatareup-regulatedby
exposuretoCd(Rubinellietal.2002).The
Chlamydomonasstrainscouldbeufulforfunc-
-
tion,themagnitudeofinductionandfunctional
analyssuggestpossibleutilityforthegenesin
thestudyofmetalstressnsingingreenplants
anddevelopmentofphytoremediationstrategies.
Hemp(CannabissativaL.)hasbeenudto
examineitscapabilityasarenewableresourceto
decontaminateheavymetalpollutedsoils(Linger
etal.2002).Metalaccumulationindifferentparts
oftheplantwasstudied(i.e.,eds,leaves,fibres
andhurds),andthehighestconcentrationsofall
80
examinedmetals(i.e.,Ni,Pb,Cd)arefoundinthe
owsaphytoremediationpotential
of126gCdha
)1
vegetationperperiod.
IntheirstudiesontheeffectofmixedCd,Cu,
Ni,andZnatdifferentpHsuponalfalfagrowth
andheavymetaluptake,Peralta-Videaetal.
(2002)foundthatthemaximumrelativeuptakes
(elementinplant/elementinsoil-water-solution)
are26timesforNi,23timesforCd,12timesfor
Zn,and6timesforCu,indicatingtheabilityof
alfalfaplantstotakeupelementsfromasoilma-
trixcontaminatedwithamixtureofthemetals.
Onceintroducedintothesoilmatrix,Pbisvery
diffiacityofthesoilto
adsorbPbincreaswithincreasingpH,cation
exchangecapacity,organiccarboncontent,soil/
waterEh(redoxpotential)andphosphatelevels
(UnitedStatesEnvironmentalProtectionAgency
1992).
Amodelfortheuptake,translocation,and
accumulationofPbbymaizeforthepurpoof
phytoextractionhasbeenpropod,suggesting
thatprecipitationofPbasaPb-phoshateisoneof
themostimportantmechanismsinthissystem,
withmaximumsaturableuptakerateofPband
effectiverootsmassbeingalsopossiblekeyplant
parameters(Brennan&Shelley1999).
Aftercollectingsoilmaterialandplanttissue
alongtranctsintwoheavilycontaminatedsoil
facilitiesandanalyzingthemformetalcontent,it
wasobrvedthattissuePbcorrelatedslightlywith
exchageableandsolublesoilPb,buttissueCdwas
poorlycorrelatedwithsoilCdspecies(Pichtel
etal.2000).LeadandCduptakewasmaximalin
AgrostemmagithagorootandinTaraxacumoffi-
cinale,lantsthatremoved
mostPbandCdwerepredominantlyherbaceous
species,someofwhichproducesufficientbiomass
abilityofT.officinaleandAmbrosiaartemisiifolia
tosuccessfullyremovesoilPbandCdduringre-
peatedcroppingswasdemonstratedingrowth
chamberstudies(Pichteletal.2000).
Certainplants(mostly,belongingtothe
Brassicaceae,Euphorbiaceae,Asteraceae,Lamia-
ceae,andScrophulariaceaefamilies)havebeen
identifiedwhichhavethepotentialtouptakePb
(UnitedStatesEnvironmentalProtectionAgency
2000a,b).hasbeenfoundtohaveagood
abilitytotransportPbfromrootstotheshoots.A
studyontheeffectsofdifferentconcentrationsof
Pbontheuptakeandaccumulationofthilement
bytheroots,
hizashowedthat,
hasconsiderableabilitytoremovePbfromsolu-
tionsandaccumulateit,theplantstransportedand
concentratedonlyasmallamountofPbinhy-
pocotylsandshoots(Liuetal.2000).
ifoliumhasbeenfoundtogrowinsoils
a,onemajor
factorlimitingthepotentialforPbphytoextrac-
tionislowmetalbioavailabilityforplantuptake.
Toovercomethislimitation,syntheticchelators
havebeenpropodtobeaddedtothesoiltoin-
creatheamountofavailablePb(UnitedStates
EnvironmentalProtectionAgency2000a,b).Sahi
etal.(2002)reportedonaleguminousfastgrow-
ingshrub(Sesbaniadrummondii)thataccumulates
upto10,000mgPbkg
)1
inshootafterexposureto
on
ofEDTA(100lM)toamediumcontaining
1gPbl
)1
increaduptakeby21%.
AgeneticallymodifiedNicotianaglauca
(shrubtobacco)hasproventoaccu-
mulatePb,makingitespeciallypromisingfor
phytoremediation(Gisbertetal.2003).Thisplant
hasawidegeographicdistribution,isfast-growing
withahighbiomass,andisrepulsivetohervibores.
Theinductionandoverexpressionofawheatgene
encodingphytochelatingsynthainthisplant
greatlyincreaditstolerancetoPbandCd,and
edlingsofthetransformedplantsaccumulated
doubleconcentrationofPbcomparedtothewild
type.
Usingradiolabeledrecombinantcalmodulinas
aprobetoscreenatobaccocDNAlibrary,Arazi
etal.(1999)discoveredaprotein,NtCBP4,that
canmodulateplanttolerancetoheavymetals.
Severalindependenttransgeniclinexpressing
NtCBP4hadhigherthannormallevelsof
NtCBP4,exhibitingimprovedtolerancetoNiand
hyperntitivitytoPb,whichareassociatedwith
reducedNiaccumulationandenhancedPbaccu-
mulation,sthefirstreportof
aplantprotein(probablyinvolvedinmetaluptake
acrosstheplasmamembrane)thatmodulates
ne
couldbeufulforimprovingphytoremediation
strategies.
81
c
AspointedoutinthereviewbyOremlandand
Stolz(2003),Aspollutionisaproblemofcritical
importancecurrentlyaffectingthehealthofmil-
bovementioned
paper,theauthorsreviewedwhatisknownabout
As-metabolizingbacteriaandindicatedthatar-
niteoxidationisbeingstudiedasthebasisfor
bioremediationofsystemswherearnite,As(III),
isapollutant.
Inthiscontext,phytoremediationhasrecently
beenpropodasaneff
fact,theChinebrakefern(Pterisvittata)hasbeen
reportedtohyperaccumulateAstoextremelyhigh
concentrations,upto23,000lgarnicg
)1
,inits
shoots(fronds)(Maetal.2001).Thisprimitive
plantactuallythrivesonAs,doublingitsbiomassin
strikingdiffaandAsnon-
accumulatorsistheremarkabletransportofthis
a,accu-
mulatingupto95%oftheAsintheabove-ground
tissue(Doucleff&Terry2002).Zhangetal.(2002)
havehypothesizedthatthebrakeferntakesupAsas
arnate,subquentlyconvertingittoarnite
ahasbeenshowntoreacha
bioconcentrationfactor(ratioofplantAsconcen-
trationtowater-solubleAsinsoil)of1450(Tuetal.
2002).Oncethemolecularmechanismsinvolvedin
aareknown,
genesresponsiblefortheremarkableabilitiesofthis
plantcouldbeudtotransformfast-growing,high-
biomassphytoremediators(Doucleff&Terry2002).
OtherplantssuchasPityrogrammacalomelanos,
Mimosapudica,andMelastomamalabrathricum
mightbesuitableforAsphytoremediation(Vi-
soottivithetal.2002).lanosaccumu-
latesmostofthismetalloidinthefrondswhilethe
rhizoidscontainthelowestconcentrationsofAs
(Francesconietal.2002).
AtransgenicsystemforremovingAsfromsoil,
inrtingtwogenes,arsC(arnatereducta)and
ECS(c-glutamylcysteinesyntheta)
naplantshasbeendeveloped
(Dhankheretal.2002).WhengrownonAs,the
transgenicplantsaccumulated4-to17-foldgreater
freshshootweightandaccumulated2-to3-fold
moreAspergramoftissuethanwildtypeor
plantxpressingc-ECSorArsCalone(Dhankher
etal.2002).Inanyca,thetoleranceandaccu-
mulationvaluesreachedbythetransgenicplants
a.
Sauge-Merleetal.(2003)havedescribedadif-
ferentapproach,nagene
encodingphytochelatinsyntheta(AtPCS)in
cterialcellxpressingAtPCS
wereplacedintheprenceofAs,cellularmetal
archis
stillneededonthepossibilityofusinggenesofthe
phytochelatinbiosyntheticpathwaytodesign
bacterialstrainsorhigherplantswithincread
abilitiestoacumulateAsforremediationpro-
cess.
,onceintheshoot,Asisstoredas
anAs(III)tris-thiolatecomplex,beingthemost
probablethiolatedonoritherglutathioneor
phytochelatins(Pickeringetal.2000).Inthisre-
spect,theadditionofthedithiolAschelatordi-
mercaptosuccinatetoAs-contaminatedsoilshas
beensuggestedtopromoteAsbioaccumulationin
plantshoots.
Astudyoftheinfluenceofroottemperatureon
phytoaccumulationofAs,amongotherelements,
inpotatoplants(.
Spunta),inducedbytheapplicationofmulches,
indicatedthatdifferentroottemperatureswere
accompaniedbysignificantlydifferentresponsin
Asphytoaccumulation(Baghouretal.2001).In
termsoftherelativedistributionofthephytoac-
cumulatedmetals(withrespecttothetotalofthe
plant),Asaccumulatedmainlyintherootsand
leaflgardtophytoremediationusing
tomatoplants,itisimportanttoconsiderthe
thermalregimeofthesoiltooptimizephytoex-
traction(Baghouretal.2001).
Thec-glutamylcysteinesynthetainhibitor,
L-buthionine-[S,R]-sulphoximine(BSO),dra-
maticallyincreasAsnsitivity,bothinnon-
adaptedandAs-hypertolerantplants,showing
thatphytochelatin-badquestrationisntial
forbothnormalconstitutivetoleranceand
adaptativehypertolerancetothismetalloid(Schat
etal.2002).
lnewfindingsandoutlook
Improvementofplantsbygeneticengineering
opensupnewpossibilitiesforphytoremediation
(Karenlampietal.2000).Also,genesinvolvedin
theregulationofthepartitioningofmetals
82
betweenrootandshootwillbeofhighinterestin
thefuture(Delhaize1996).
Sofar,onlyafewcashavebeenreported
wheremetaluptake,transportandaccumulation
aswellasmetaltolerancehavebeensuccesfully
ncludeHgionreductioncausing
improvedresistanceandphytoextraction(Heaton
etal.1998;Rughetal.1996,1998a,b),andme-
tallothioneincausingenhancedCdtolerance
(Misra&Gedamu1989;Evantal.1992;
Elmayan&Tepfer1994;Hattorietal.1994;
Hagawaetal.1997;Karenlampietal.2000;
Kramer&Chardonnens2001).
Veryexcitingworksontheapplicationof
moleculargeneticapproachestoimprovemetal
phytoremediationwerepublishedbyMeagher¢s
teaminrelationtoHgpollution(Rughetal.1996,
1998a,b).TheyudexpressionofmerAgene
(mercuricreducta,MerA,convertstoxicHg2+
tothelesstoxic,relativelyinertHg0inbacteria)in
transgenicplantsfortheremediationofHgpol-
enizedmerAquence,merApe9,
naed-
lingxpressingthisquencegerminatedandgrew
onHg-containingmedium,evolvingconsiderable
abilityofyellowpoplar(Liriodendrontulipifera)
tissueculturesandplantletstoexpressmodified
mercuryreductageneconstructshasalsobeen
reported(Rughetal.1998a).Thesignificanceof
thestudyofMeagher¢srearchgroupisthatit
canleadtothemoreefficientandaffordable
cleanupofenvironmentalHgpollution,andina
broadercontext,itprovesthepowerofgenetic
engineeringforphytoremediation(Pilon-Smits&
Pilon2000).Mostrecently,Bizilyetal.(2003)
haveengineeredplantsthatexpressthebacterial
Hgresistanceenzymesorganomercuriallya
merBgenewangineeredtotargetMerBfor
accumulationintheendoplasmicreticulumand
oteinin
endoplasmicreticulum-targetedplantsappearedto
accumulateinlargevesicularstructuresand
moderateincreasintargetedMerBexpression
ledtosignificantgainsindetoxification.
escensor
shouldbegoodsourcesforgenes
olerance
andaccumulationarelargelyindependentprop-
erties,theyshouldbebothengineeredtogeta
suitableplantformetalphytoextraction(Mac-
nairetal.1999;Karemlampietal.2000).With
respecttometalphytoextraction,twostrategies
couldbeconsidered:(i)convertslow-growing,
low-biomasshyperaccumulatorsintofast-grow-
ing,high-biomassvarieties,or,alternatively,(ii)
introducemetal-hyperaccumulationtraitsinto
fast-growing,high-biomassplants(Cunningham
&Ow1996).
Raskin(1996)suggestedthattransgenicplants
couldbedevelopedtocretemetal-lectiveli-
gandsintotherhizospherewhichcouldspecifically
solubilizeelementsofphytoremediationinterest.
Sincelittleisknownabouttherhizosphereof
hyperaccumulators,Delormeetal.(2001)com-
paredtheinfl-
rulescenswiththeeffonsoil
microbes,findingoutthatmicrobialpopulations
but
higherratiosofmetal-resistantbacteriawere
-
escensacidifiesits
rhizosphere,increasingavailablemetalsaround
therootsand,conquently,increaslectionfor
metal-resistantbacteria.
Sincemetaltransportfromthecytosoltothe
vacuoleisthoughttobeanimportantcomponent
ofiontoleranceandofaplantspotentialoruin
phytoremediation,somestudieshavebeenper-
formedtounderstandthisprocess(Hirschietal.
2000).Infact,intobacco(m)plants,it
hasbeenfoundthattheArabidopsisantiporter
CAX2(calciumexchanger2)maybeakeymedi-
atorofthemetaltransportfromthecytosoltothe
vacuole(Hirschietal.2000).Tobaccoplants
expressingCAX2accumulatedmoreCa,Cd,and
MnandweremoretoleranttoelevatedMnlevels.
ExpressionofCAX2alsoincreadCdandMn
transportinisolatedroottonoplastvesicles.
Modulationofthistransportercouldbeufulfor
phytoremediation.
Someauthors(Kramer&Chardonnens2001)
considerthatfieldtrialshavesuggestedthatthe
rateofcontaminantremovalusingconventional
traitsandgrowthconditionsisinsufficient,andso
theintroductionofnoveltraitsintohighbiomass
plantsinatransgenicapproachisneededfor
effa,the
engineeringofaphytoremediatorplantrequires
theoptimizationofprocesssuchastraceele-
mentmobilizationinthesoil,uptakeintothe
83
root,anddetoxificationandallocationwithinthe
plant(Kramer&Chardonnens2001;Singhetal.
2003).
Moleculartechniquessuchastheanalysisof
molecularvarianceoftherandomamplifiedpoly-
morphicDNAmarkersareufultoinvestigate
thegeneticdiversityandheavymetaltolerancein
plantpopulations,providingtheopportunityto
investigatethefirststepsinthedifferentiationof
plantpopulationsunderverelectionpressure
andtolectplantsforphytoremediation
(Mengonietal.2000).
Onestrategyforincreasingtheefficiencyof
phytoextractionistoincreametaltranslocation
determinewhethergeneticallyincreadtranspi-
rationwouldincreatheefficiencyofphytoex-
traction,weremutagenizedwith
ethylmethanesulfonate,andmatureplantswere
thenlf-pollinated(Glebaetal.1999).Insub-
quentsteps,alineinwhichthetranspirationrate
exceededthatofthewild-typeplantsby130%in
soil,phytoextractionofPbwastestedinPb-con-
h-
transpirationlinephytoextracted104%morePb
.
Amuchbetterunderstandingofthegenetic,
biochemicalandphysiologicalbasisofmetalhy-
peraccumulationinplantsisofkeyimportancefor
hanisms
deployedintheacquisitionofesntialheavyme-
talmicronutrientshavenotbeenclearlydefined
althoughanumberofgeneshavenowbeeniden-
tifi
classofmembranetransportershavebeen
implicatedinthetransportofheavymetalsina
varietyoforganismsandcouldrvesucharolein
plants:(i)theheavymetal(CPx-type)ATPas,(ii)
thenaturalresistance-associatedmacrophage
protein(Nramp)family,and(iii)membersofthe
cationdiffusionfacilitator(CDF)family(Williams
etal.2000),recentlyrenamedascationefflux
family(CEF)(Maretal.2001).
MembersoftheZIPgenefamilyarealso
capableoftransportingavarietyofcations,
includingCd,Fe,MnandZn(Guerinot2000).
InformationonwhereintheplanteachoftheZIP
transportersfunctionsandaboutitsregulation,
wouldopenthepossibilityofmanipulatingplant
mineralstatuswithaneyetodevelopingcropsthat
bioaccumulateorexcludetoxicmetals.
AccordingtoRughetal.(1998a),theexcep-
tionalphysiologicalabilitiesofplantscouldbe
augmentedwithgenesfromthe‘‘moleculartool-
boxes’’ofmicrobialmetabolismtoallowthe
developmentofpowerfulweaponsforpollution
control.
Inrecentyears,veralkeystepshavebeen
identifiedatthemolecularlevel,enablingusto
initiatetransgenicapproachestoengineerthe
transitionmetalcontentofplants(Clemental.
2002).Inthisrespect,transgenictomatoplants
(902)express-
ingthebacterialgene1-aminocyclopropane-1-
carboxylicacid(ACC)deaminawerecompared
tonon-transgenictomatoplantsintheirabilityto
growintheprenceofandaccumulateCd,Co,
Cu,Mg,Ni,PborZn(Grichkoetal.2000).In
general,transgenictomatoplantxpressingACC
deaminaacquireagreateramountofmetal
withintheplanttissues,andarelesssubjecttothe
deleteriouffectsofthemetalsonplantgrowth
thanthenon-transgenicplants.
Finally,andsinceconsiderableexpectationsare
placedongeneticmodificationtoproduceideal-
izedplantsforphytoextraction,itisimportantto
rememberthattheever-increasingpublicconcern
overthereleaofgeneticallymodifiedorganisms
-
podbyBaker&Whiting(2002),itwouldbe
prudenttocomplementgeneticalapproacheswith
archesfornaturalhyperaccumulatorsandfur-
therexploreconventionalplantbreedingpractices
(Chaneyetal.2000),withtheadditionalbenefitof
catalogingandconrvingtheuniqueglobalbio-
r-
more,Kramer(2001)suggestedthattheGanges
escencotype(Lombietal.2000)should
beconsideredamodelpopulationoftobecen-
trallypropagated,crosdandmadeavailablefor
allscientists,na
uldeventuallyre-
ducethegeneticvariabilitywithintheedpopu-
lation,amajordrawbackintheworkwithmetal
hyperaccumulators.
Althoughphytoremediationisstillanewtech-
nology,inthelastfewyearsalotofbasicrearch
hasbeencarriedoutinanattempttounderstand
howplantstakeuplargequantitiesofmetals,to-
getherwiththemechanismsofmetaltranslocation
fromrootstoshoots,storageanddetoxification.
Nevertheless,itisnotyetclearhowthisinforma-
84
tionshouldbeudtoefficientlyremovemetals
frompollutedfi,apartfromdeeperbasic
rearch,moreappliedprojectsinthefieldare
neededtoclarifytherealpotentialofthis
technology.
Indeed,beforeattemptingfieldimplementation
ofthistechnology,itisntialtoconductbasic
laboratoryworkfirst,ifwearetoavoidinflated
expectationscomingfromexaggeratedclaimsof
success(aswasthecawithbacterialremediation
regardingitscontaminantremovalefficiency)
(Boyajian&Carreira,1997).
Inthisrespect,twostrategieswilldefinitelybe
consideredinthefuture:(i)optimizationofagro-
nomicpractices,includingfertilization,croppro-
tectionchemicals,methodsofharvestingand
sowing,etc.,especiallyforhyperaccumulating
plants,sincetheknowledgeneededforproper
cultivationofmanyofthereportedhyperaccu-
mulatorsisstilllacking;and(ii)geneticmanipu-
lationofplants,although,asabove-mentioned,
theutilizationoftransgenicplantsprentlydoes
notenjoyhighpublicacceptance,atleastregard-
ingtheutilizationofGMcropsforhumancon-
r,althoughcertainlyextremely
difficulttopredict,publicopinionmightbedif-
ferentwhentransgenicplantsareaimedtowards
environmentalcleanup,suchastransgenicphyto-
a,beforeGMtech-
niquescanbeappliedsuccessfully,adetailed
knowledgeofthemechanismsofuptake,translo-
cation,questration,lsinplantsis
required,andthatinformationisatprentcer-
ll,thefunctionsofmany
planttransportersthatarecentraltophytoreme-
diationremainstilluncharacterized.
Itislikelythatconventionalbreedingtech-
niques,whichundoubtedlyenjoyhighpublic
acceptance,mightprovideasuitablealternative
although,sofar,crossingbetweenhyperaccumu-
latorsandcropsplantshasnotbeensuccessful
a
species,theuofthelectionofindividuals
withgreatermetalremovalefficiencyhasappar-
entlynotbeenachievedyet(McGrathetal.
2002).Breweretal.(1999)udsomatichybrid-
izationtocombinehyperaccumulatingtraitswith
thoofhigherbiomasscropspecies,butcom-
bininggenomesandlectingaprogenyusing
non-GMmethodsrequiresrelativelylongperiods
oftime.
Onefrequentlyignoredaspectwhendiscussing
futuredirectionswithinthephytoextractionfieldis
theneedtodevelopeconomicallyfeasibletech-
niquesforthedisposalofmetal-enrichedplantsor,
whenpractical,omical
methodofreclaimingmetalsfromplantresiduesis
requiredtoeliminatetheneedforcostlyoff-site
portantly,rearchmustalso
inevitablybefocudtowardsfindingwaysto
avoidtransferofmetalstoothermedia,theenvi-
ronmentingeneral,andparticularlytothefood
chain.
Althoughphytoextractionisnotamagicsolu-
tion,commercially,itisgainingappealbecauit
ischeaperthanconventionalclean-upmethods.
Butitisnotaneasytechnologyjustconsistingof
pickingupsomehyperaccumulatingplantsand
contrary,itishighlytechnical,requiringexpert
projectdesignerswithplentyoffieldexperience
thatcarefullychootheproperspeciesandculti-
varsforparticularmetals(andcombinationsof
them)andregions,andmanagetheentiresystem
tomaximizepollutantremovalefficiency.
Forthetimebeing,phytoextractionisnotthe
appropriatechoiceforallmetalpollutedsites
since,forinstance,inmanycas,thehighmetal
concentrationsand/ortheprenceofharshcon-
ditions(hostileclimate,soilproperties)donot
uently,phytoextrac-
tionwillmostlikelybeudinareaswithmedium
tolowlevelsofmetals,orasafinalpolishingstep
(toreducethecostandimpactofothermethods)
afterotherclean-uptechniqueshavebeenudto
ably,phytoextraction
(limitedtotherootingzone)willfinditswidest
applicationintheremediationofsurface-polluted
soils.
Inanyevent,phytoextractionofmetalsdefi-
nitelyholdsgreatpotentialfortheremovalof
xtractionisa
morecost-effectivealternativethanconventional
remediationmethodsandsincemanydecisionsare
badonthebasisofstrictcost-benefitanalysis,
economicpressurestogetherwithpublicaccep-
tancewillprobablycontinuetoinfluencedecisions
s,al-
thoughremediationdoesnotreprentprofitto
thepollutingcompanies,itreducestheprobability
ormagnitudeoflegalliability,oftenmakingit
worththeinvestment.
85
Phytoextractionislittlebylittlecarvingoutits
ownnicheasasureandaestheticallypleasing
-
thoughstudiedextensivelyinrearchandin
small-scaledemonstrations,yetfull-scaleapplica-
tionsofphytoextractionarecurrentlylimitedtoa
xtractionneedsa
transdisciplinary(notsimplymultidisciplinary)
approachwithinputsfrommanyfieldssuchas
botany,plantphysiology,biochemistry,geochem-
istry,agriculturalengineering,agronomy,soilsci-
ence,geneticengineeringandsoon.
Althoughonlythefuturewilltelluswhether
phytoremediationwillbecomeawidelyud
technology,thestudyoftheutilizationofthe
remarkableabilityofplantstoremovepollutants
fromtheenvironmentisatprentafascinating
fieldofrearch.
References
AgerFJ,YnsaMD,Domınguez-SolısJR,GotorC,
RespaldizaMA&RomeroLC(2002)Cadmiumlocalization
andquantifinausingmicro-PIXE.
ms189:494–498
AlkortaI&GarbisuC(2001)Phytoremediationoforganic
ourceTechnol.79:273–276
AraziT,SunkarR,KaplanB&FrommH(1999)Atobacco
plasmamembranecalmodulin-bindingtransporterconfers
Ni2+toleranceandPb2+hypernsitivityintransgenic
.20:171–182
AssuncaoAGL,MartinsPD,DeFolterS,VooijsR,SchatH&
AartsMGM(2001)Elevatedexpressionofmetaltransporter
genesinthreeaccessionsofthemetalhyperaccumulator
ellEnviron.24:217–226
BaghourM,MorenoDA,HernandezJ,CastillaN&RomeroL
(2001)Influenceofroottemperatureonphytoaccumulation
ofAs,Ag,Cr,andSbinpotatoplants(SolanumtuberosumL.
).
.36:1389–1401
BakerAJM(1981)Accumulatorsandexcluders—Strategiesin
utr.3:
643–654
BakerAJM&BrooksRR(1989)Terrestrialhigherplants
woftheir
distribution,overy1:
81–126
BakerAJM&WhitingSN(2002)InarchoftheHoly
Grail—afurtherstepinunderstandingmetalhyperaccumu-
lation?NewPhytol.155:1–7
BakerAJM,McGrathSP,ReevesRD&SmithJAC(2000)
Metalhyperaccumulatorplants:Areviewoftheecologyand
physiologyofabiologicalresourceforphytoremediationof
:TerryN,BanuelosG&Vangrons-
veldJ(Eds),Phytoremediationofcontaminatedsoiland
water(pp85–107).LewisPublisher,BocaRaton,FL,USA
BakerAJM,McGrathSP,SidoliCMD&ReevesRD(1994a)
Thepossibilityofinsituheavymetaldecontaminationof
pollutedsoilsusingcropsofmetal-accumulatingplants.
.11:41–49
BakerAJM,ReevesRD&HajarASM(1994b)Heavymetal
accumulationandtoleranceinBritishpopulationsofthe
metallophyteThlaspicaerulescensJ.&(Brassica-
ceae).NewPhytol.127:61–68
BennetLE,BurkheadJL,HaleKL,TerryN,PilonM&
Pilon-SmitsEA(2003)AnalysisoftransgenicIndianmustard
plantsforphytoremediationofmetal-contaminatedmine
.32:432–440
BertV,MacnairMR,deLaguerieP,Saumitou-LapradeP&
PetitD(2000)Zinctoleranceandaccumulationinmetallic-
olousandnonmetallicolouspopulationsofArabidopsis
halleri(Brassicaceae).NewPhytol.146:225–233
BizilySP,KimT,KandasamyMK&MeagherRB(2003)
Subcellulartargetingofmethylmercurylyaenhancesits
specificactivityfororganicmercurydetoxificationinplants.
PlantPhysiol.131:463–471
BolanNS,AdrianoDC,ManiPA&DuraisamyA(2003a)
Immobilizationandphytoavailabilityofcadmiuminvariable
.Effoil251:
187–198
BolanNS,AdrianoDC&NaiduR(2003b)Roleofphosphorus
in(im)mobilizationandbioavailabilityofheavymetalsinthe
l.177:1–44
BoominathanR&DoranPM(2003a)Organicacidcomplex-
ation,heavymetaldistributionandtheeffectsofATPa
inhibitioninhairyrootsofhyperaccumulatorplantspecies.
hnol.101:131–146
BoominathanR&DoranPM(2003b)Cadmiumtoleranceand
antioxidativedefensinhairyrootsofthecadmiumhyper-
accumulator,ineer.
20:158–167
BoyajianGE&CarreiraLH(1997)Phytoremediation:aclean
hnol.
15:127–128
BrennanMA&ShelleyML(1999)Amodeloftheuptake,
translocation,andaccumulationoflead(Pb)bymaizeforthe
er.12:271–297
BrewerEP,SaundersJA,AngleJS,ChaneyRL&McIntosh
MS(1999)Somatichybridizationbetweenthezincaccumu-
.
Gen.9:761–771
BriatJF&LebrunM(1999)Plantresponstometaltoxicity.
ComptesRendusdel0AcademiedesSciences-SeriesIII-
SciencesdelaVie322:43–54
BrooksRR(1988)(Ed)PlantsthatHyperaccumulateHeavy
ernational,Oxon,UK,356pp
BrooksRR,LeeJ,ReevesRD&JaffreT(1977)Detectionof
nickeliferousrocksbyanalysisofherbariumspeciesof
.7:49–57
BrownSL,ChaneyRL,AngleJS&BakerAJ(1995)Zincand
cadmiumuptakebyhyperaccumulatorThlaspicaerulescens
.J.59:125–133
ChaneyRL,LiYM,BrownSL,HomerFA,MalikM,Angle
JS,BakerAJM,ReevesRD&ChinM(2000)Improving
metalhyperaccumulatorwildplanttocommercialphytoex-
tractionsystems::TerryN,
BanuelosG&VangronsveldJ(Eds),Phytoremediationof
contaminatedsoilandwater(pp129–158).LewisPublisher,
BocaRaton,FL,USA
86
ChaneyRL,MalikM,LiYM,BrownSL,BrewerEP,AngleJS
&BakerAJ(1997).
Biotechnol.8:279–284
ChaudhryTM,HayesWJ,KhanAG&KhooCS(1998)
Phytoremediation—Focusingonaccumulatorplantsthat
-
icol.4:37–51
ChenB,ChristieP&LiX(2001)Amodifiedglassbead
compartmentcultivationsystemforstudiesonnutrientand
phere
42:185–192
ChenHM,ZhengCR,TuC&ShenZG(2000)Chemical
methodsandphytoremediationofsoilcontaminatedwith
phere41:229–234
ChenYX,HeYF,YangY,YuYL,ZhengSJ,TianGM,Luo
YM&WongMH(2003)Effectofcadmiumonnodulation
andN
2
-fi-
sphere50:781–787
ClemensS(2001)Developingtoolsforphytoremediation:
towardsamolecularunderstandingofplantmetaltolerance
14:
235–239
ClemensS,PalmgrenMG&KramerU(2002)Alongway
ahead:understandingandengineeringplantmetalaccumu-
PlantSci.7:309–315
CobbettC,MayMJ,HowdenR&RollsB(1998)The
glutathione-deficient,cadmium-nsitivemutant,cad2-1,of
Arabidopsisthalianaisdeficientinc-glutamilcysteinesynthe-
.16:73–78
CobbettC&GoldsbroughP(2002)Phytochelatinsand
metallothioneins:Rolesinheavymetaldetoxificationand
.53:
159–182
CollinsYE&StotzkyG(1989)Factorsaffectingthetoxicityof
:BeveridgeTJ&DoyleRJ(Eds),
MetalIonsandBacteria(pp31–90).Wiley,Toronto,Canada
CunninghamSD&OwDW(1996)Promisandprospectsof
hysiol.110:715–719
Dahmani-MullerH,vanOortF,GelieB&BalabaneM(2000)
Strategiesofheavymetaluptakebythreeplantspecies
.109:231–238
Dahmani-MullerH,vanOortF&BalabaneM(2001)Metal
extractionbyArabidopsishallerigrownonanunpollutedsoil
amendedwithvariousmetal-bearingsolids:apotexperiment.
.114:77–84
DeKnechtJA,vanDillenM,KoevoetsPLM,SchatH,Verkleij
JAC&ErnstWHO(1994)Phytochelatinsincadmium-
hysiol.
104:255–261
DelhaizeE.A(1996)Ametal-accumulatormutantofArabid-
hysiol.111:849–855
DelormeTA,GagliardiJV,AngleJS&ChaneyRL(2001)
InfluenceofthezinchyperaccumulatorThlaspicaerulescens
J.&nonmetalaccumulatorTrifolium
iol.
47:773–776
DhankherOP,LiY,RonBP,ShiJ,SaltD,SenecoffJF,
SashtiNA&MeagherRB(2002)Engineeringtoleranceand
hyperaccumulationofarnicinplantsbycombiningar-
natereductaandc-glutamylcysteinesynthetaexpression.
hnol.20:1140–1145
DielsN,vanderLelieD&BastiaensL(2002)Newdevelop-
mentsintreatmentofheavymetalcontaminatedsoils.
Re/.&Bio/Technol.1:75–82
DoucleffM&TerryN(2002).
Biotechnol.20:1094–1095
DushenkovS,SkarzhinskayaM,GlimeliusK,GlebaD&
RaskinI(2002)Bioengineeringofaphytoremediationplant
emediation
4:117–126
EbbsS,LauI,AhnerB&KochianL(2002)Phytochelatin
synthesisisnotresponsibleforCdtoleranceintheZn/Cd
hyperaccumulatorThlaspicaerulescens(J.&).Planta
214:635–640
ElmayanT&TepferM(1994)Synthesisofabifunctional
metallothionein/b-glucuronidafusionproteinintransgenic
tobaccoplantsasameansofreducingleafcadmiumlevels.
PlantJ.6:433–440
EntryJA,RygiewiczPT,WatrudLS&DonnellyPK(2002)
Influenceofadversoilconditionsontheformationand
.7:
123–138
EvansKM,GatehouJA,LindsayWP,ShiJ,TommeyAM&
RobinsonNJ(1992)Expressionofthepeametallothionein-
likegenePsMTAinEscherichiacoliandArabidopsisthaliana
andanalysisoftracemetalionaccumulation:Implications
.20:1019–1028
EvansLD(2002)&Water
Conrvation57:12A–15A
FrancesconiK,VisoottivithP,SridokchanW&Goessler
W(2002)Arnicspeciesinanarnichyperaccumulating
fern,Pityrogrammacalomelanos:apotentialphytoremedi-
nviron.284:
27–35
GabbrielliR,PandolfiniT,VergnanoO&PalandriMR(1990)
Comparisonoftworpentinespecieswithdifferentnickel
oil.122:271–277
GarbisuC&AlkortaI(1997)Bioremediation:principlesand
.&.6:
351–366
GarbisuC&AlkortaI(2001)Phytoextraction:acost-effective
plant-badtechnologyfortheremovalofmetalsfromthe
ourceTechnol.77:229–236
GarbisuC&AlkortaI(2003)Basicconceptsonheavymetal
.&t.3:
58–66
GarbisuC,Hernandez-AllicaJ,BarrutiaO,AlkortaI&
BecerrilJM(2002)Phytoremediation:Atechnologyusing
greenplantstoremovecontaminantsfrompollutedareas.
17:75–90
GisbertC,RosR,deHaroA,WalkerDJ,BernalMP,Serrano
R&Navarro-AvinoJ(2003)Aplantgeneticallymodified
thataccumulatesPbispeciallypromisingforphytoreme-
.303:440–445
GlebaD,BorisjukNV,BorisjukLG,KneerR,PoulevA,
SkarzhinskayaM,DushenkovS,LogendraS,GlebaYY&
RaskinI(1999)Uofplantrootsforphytoremediationand
96:
5973–5977
GongJM,LeeDA&SchroederJI(2003)Long-distanceroot-
to-shoottransportofphytochelatinsandcadmiuminAra-
100:10118–10123
GrichkoVP,FilbyB&GlickBR(2000)Increadabilityof
transgenicplantxpressingthebacterialenzymeACC
deaminatoaccumulateCd,Co,Cu,Ni,Pb,andZn.
hnol.81:45–53
GuerinotML(2000)TheZIPfamilyofmetaltransporters.
(BBA)-Biomembranes1465:190–198
87
HagawaI,TeradaE,SunairiM,WakitaH,ShinmachiF&
NoguchiA(1997)Geneticimprovementofheavymetal
toleranceinplantsbytransferoftheyeastmetallothionein
gene(CUP1).PlantSoil196:277–281
HattoriJ,LabbeH&MikiBL(1994)Constructionand
expressionofametallothionein-beta-glucuronidagene
37:508–512
HeatonACP,RughCL,WangN&MeagherRB(1998)
Phytoremediationofmercury-andmethylmercury-polluted
ntam.7:
497–509
HillKA,LionLW&AhnerBA(2002)ReducedCdaccumu-
lationinZeamays:aprotectiveroleforphytosiderophores?
l.36:5363–5368
HirschiKD,KorenkovVD,WilganowskiNL&WagnerGJ
(2000)d
metalaccumulationandincreadmanganetolerance.
PlantPhysiol.124:125–133
HomerFA,MorrisonRS,BrooksRR,ClementJ&ReevesRD
(1991)Comparativestudiesofnickel,cobalt,andcopper
uptakebysomenickelhyperaccumulatorsofthegenus
oil.138:195–205
IannelliMA,PietriniF,FioreL,PetrilliL&MassacciA(2002)
AntioxidantrespontocadmiuminPhragmitesaustralis
m.40:977–982
JauertP,SchumacherTE,BoeA&ReeRN(2002)
Rhizosphereacidificationandcadmiumuptakebystrawberry
.31:627–633
KamnevAA&vanderLelieD(2000)Chemicalandbiological
parametersastoolstoevaluateandimproveheavymetal
.20:239–258
KarenlampiS,SchatH,VangronsveldJ,VerkleijJAC,vander
LelieD,MergeayM&TervahautaAI(2000)Genetic
engineeringintheimprovementofplantsforphytoremedi-
.107:225–231
KoppoluL&ClementsLD(2003)Pyrolysisasatechniquefor
:
s
&Bioenergy24:69–79
KramerU&ChardonnensAN(2001)Theuoftransgenic
plantsinthebioremediationofsoilscontaminatedwithtrace
hnol.55:661–672
KramerU(2000)Cadmiumforallmeals—plantswithan
tol.145:1–5
KramerU,Cotter-HowellsJD,CharnockJM,BakerAJM&
SmithJAC(1996)Freehistidineasametalchelatorinplants
379:635–638
LahnerB,GongJ,MahmoudianM,SmithEL,AbidKB,
RogersEE,GuerinotML,HarperJF,WardJM,McIntyre
L,SchroederJI&SaltDE(2003)Genomicscaleprofilingof
.
Biotechnol.21:1215–1221
LasatMM,BakerAJM&KochianLV(1998)AlteredZn
compartmentationintherootsymplasmandstimulated
ZnabsorptionintotheleafasmechanisminvolvedinZn
hysiol.
118:875–883
LasatMM(2002)Phytoextractionoftoxicmetals:areviewof
.31:109–120
LehoczkyE,MarthP,SzabadosI,PalkovicsM&LukacsP
(2000)Influenceofsoilfactorsontheaccumulationof
nal.31:2425–
2431
LehoczkyE,SzaboL&HorvathS(1998)Cadmiumuptakeby
plantsindiffnal.29:
1903–1912
LingerP,MussigJ,FischerH&KobertJ(2002)Industrial
hemp(CannabissativaL.)growingonheavymetalcontam-
inatedsoil:fibrequalityandphytoremediationpotential.
rotect.16:33–42
LiuD,JiangW,LiuC,XinC&HouW(2000)Uptakeand
accumulationofleadbyroots,hypocotylsandshootsof
Indianmustard(BrassicajunceaL.).BioresourceTechnol.71:
273–277
LombiE,TearallKL,HowarthJR,ZhaoFJ,HawkesfordMJ
&McGrathSP(2002)Influenceofironstatusoncadmium
andzincuptakebydifferentecotypesofthehyperaccumu-
hysiol.128:1359–1367
LombiE,ZhaoFJ,DunhamSJ&McGrathSP(2000)
CadmiumaccumulationinpopulationsofThlaspicaerules-
tol.145:11–20
LongXX,YangXE,YeZQ,NiWZ&ShiWY(2002)
Differencesofuptakeandaccumulationofzincinfour
tanicaSinica44:152–157
LuoYM,ChristieP&BakerAJM(2000)SoilsolutionZnand
pHdynamicsinnon-rhizospheresoilandintherhizosphere
ofThlaspicaerulescensgrowninaZn/Cd-contaminatedsoil.
Chemosphere41:161–164
MaLQ,KomarKM,TuC,ZhangW,CaiY&KennelleyED
(2001)409:579
MaM,LauPS,JiaYT,TsangWK,LamSKS,TamNFY&
WongYS(2003)TheisolationandcharacterizationofType1
metallothionein(MT)cDNAfromaheavy-metal-tolerant
plant,ci.164:51–60
MacnairMR(2002)Within-andbetween-populationgenetic
Phytol.155:59–66
MacnairMR,BertV,HuitsonSB,Saumitou-LapradeP&Petit
D(1999)Zinctoleranceandhyperaccumulationaregeneti-
B
266:2175–2179
MadejonP,MurilloJM,MaranonT,CabreraF&SorianoMA
(2003)Traceelementandnutrientaccumulationinsunflower
Environ.20:239–257
MarP,ThomineS,SchroederJI,WardJM,HirschiK,SzeH,
TalkeIN,AmtmannA,MaathuisFJ,SandersD,HarperJF,
TchieuJ,GribskovM,PersansMW,SaltDE,KimSA&
GuerinotML(2001)Phylogeneticrelationshipswithincation
hysiol.126:1646–
1667
McGrathSP,ShenZG&ZhaoFJ(1997)Heavymetaluptake
andchemicalchangesintherhizosphereofThlaspicaerules-
censandThlaspiochroleucumgrownincontaminatedsoils.
PlantSoil188:153–159
McGrathSP,LombiE&ZhaoFJ(2001)What’snewabout
cadmiumhyperaccumulation?NewPhytol.149:2–3
McGrathSP,ZhaoFJ&LombiE(2002)Phytoremediationof
metals,metalloids,my75:
1–56
McGrathSP&ZhaoFJ(2003)Phytoextractionofmetalsand
hnol.14:277–282
McIntyreT(2003)Phytoremediationofheavymetalsfrom
hnol.78:97–123
MeagherRB(2000)Phytoremediationoftoxicelementaland
iol.3:153–162
88
MejareM&BulowL(2001)Metal-bindingproteinsand
peptidesinbioremediationandphytoremediationofheavy
Biotechnol.19:67–73
MengoniA,GonnelliC,GalardiF,GabbrielliR&Bazzicalupo
M(2000)Geneticdiversityandheavymetaltolerancein
populationsofSileneparadoxaL.(Caryophyllaceae):a
randomamplifi.
9:1319–1324
MisraS&GedamuL(1989)Heavymetaltolerancetransgenic
.
.78:161–168
MorganAJ,EvansM,WintersC,GaneM&DaviesMS(2002)
Assayingtheeffectsofchemicalameliorantswithearthworms
andplantxpodtoaheavilypollutedmetalliferoussoil.
ol.38:323–327
Navari-IzzoF&QuartacciMF(2001)Phytoremediationof
ncemechanismsagainstoxidativestress.
MinervaBiotec.13:73–83
NedelkoskaTV&DoranPM(2000)Hyperaccumulationof
hnol.
Bioeng.67:607–615
O0ConnorCS,LeppiNW,EdwardsR&SunderlandG(2003)
Thecombineduofelectrokineticremediationandphyto-
remediationtodecontaminatemetal-pollutedsoils:alabora-
.84:
141–158
OremlandRS&StolzJF(2003)e
300:939–944
PawlowskaTE,ChaneyRL,ChinM&CharvatI(2000)Effects
ofmetalphytoextractionpracticesontheindigenouscom-
munityofarbuscularmycorrhizalfungiatametal-contam-
inatedlandfiiol.66:2526–2530
PenceNS,LarnPB,EbbsSD,LethamDL,LasatMM,
GarvinDF,EideD&KochianLV(2000)Themolecular
physiologyofheavymetaltransportintheZn/Cdhyperac-
25:4956–4960
Peralta-VideaJR,Gardea-TorresdeyJL,GomezE,Tiemann
KJ,ParsonsJG&CarrilloG(2002)Effectofmixed
cadmium,copper,nickelandzincatdifferentpHsupon
.119:
291–301
PichtelJ,KuroiwaK&SawyerrHT(2000)DistributionofPb,
CdandBainsoilsandplantsoftwocontaminatedsoils.
.110:171–178
PickeringIJ,PrinceRC,GeorgeGN,RaurWE,Wickrama-
singheWA,WatsonAA,DameronCT,DanceIG,Fairlie
DP&SaltDE(1999)X-rayabsorptionspectroscopyof
-
l.1429:351–364
PickeringIJ,PrinceRC,GeorgeGN,SmithRD,GeorgeGN&
SaltDE(2000)Reductionandcoordinationofarnicin
hysiol.122:1171–1177
Pilon-SmitsE&PilonM(2000)Breedingmercury-breathing
PlantSci.5:235–
236
PinerosMA,ShaffJE&KochianLV(1998)Development,
characterization,andapplicationofacadmium-lective
microelectrodeforthemeasurementofcadmiumfluxesin
hysiol.116:1393–
1401
PulfordID&WatsonC(2003)Phytoremediationofheavy
metal-contaminatedlandbytrees–.
29:529–540
RaskinI(1996)Plantgeneticengineeringmayhelpwith
environmentalcleanup(commentary)..
93:3164–3166
RaskinI,SmithRD&SaltDE(1997)Phytoremediationof
metals:usingplantstoremovepollutantsfromtheenviron-
hnol.8:221–226
ReaPA(2003)hnol.21:1149–1151
RengelZ(2000)EcotypesofHolcuslanatustoleranttozinc
toxicityalsotoleratezincdefi.86:1119–1126
RobinsonB,RusllC,HedleyM&ClothierB(2001)
Cadmiumuptakebyrhizobacteria:implicationsforNew
.,Eco.&Environ.87:315–321
RoutGR,SamantarayS&DasP(1999)Invitrolectionand
biochemicalcharacterisationofzincandmanganeadapted
ci.146:89–100
RubinelliP,SiripornadulsilS,Gao-RubinelliF&SayreRT
(2002)Cadmium-andiron-stress-induciblegeneexpressionin
thegreenalgaChlamydomonasreinhardtii:evidenceforH43
215:1–13
RughCL,GragsonGM,MeagherRB&MerkleSA(1998a)
Toxicmercuryreductionandremediationusingtransgenic
plantswithamodifie33:
618–621
RughCL,SenecoffJF,MeagherRB&MerkleSA(1998b)
Developmentoftransgenicyellowpoplarformercuryphy-
hnol.16:925–928
RughCL,WildeHD,StackNM,ThompsonDM,Summers
AO&MeagherRB(1996)Mercuricionreductionand
resistanceintransgenicArabidopsisthalianaplantxpressing
amodifi
93:3182–3187
SahiSV,BryantNL,SharmaNC&SinghSR(2002)
Characterizationofaleadhyperaccumulatorshrub,Sesbania
l.36:4676–4680
SaltDE,BlaylockM,KumarPBAN,DushenkovV,Ensley
BD,ChetI&RaskinI(1995a)Phytoremediation:anovel
strategyfortheremovaloftoxicmetalsfromtheenvironment
hnol.13:468–475
SaltDE,PrinceRC,PickeringIJ&RaskinI(1995b)Mech-
anismsofcadmiummobilityandaccumulationinIndian
hysiol.109:1427–1433
SaltDE,PrinceRC,BakerAJM,RaskinI&PickeringIJ
(1999)ZincligandinthemetalhyperaccumulatorThlaspi
caerulescensasdeterminedusingX-rayabsorptionspectros-
l.33:713–717
SaltDE,PrinceRC&PickeringIJ(2002)Chemicalspeciation
ofaccumulatedmetalsinplants:evidencefromX-ray
hemicalJ.71:255–259
SaltDE,SmithRD&RaskinI(1998)Phytoremediation.
.49:643–668
SanitadiToppiL&GabbrielliR(1999)Respontocadmium
.41:105–130
Sauge-MerleS,CuineS,CarrierP,Lecomte-PradinesC,Luu
DT&PeltierG(2003)Enhancedtoxicmetalaccumulationin
engineeredbacterialcellxpressingArabidopsisthaliana
iol.69:490–
494
SchatH,LluganyM,VooijsR,Hartley-WhitakerJ&Bleeker
PM(2002)Theroleofphytochelatinsinconstitutiveand
adaptiveheavymetaltolerancesinhyperaccumulatorand
.53:1–12
SchneiderT,Haag-KerwerA,MaetzM,NieckeM,PovhB,
RauschT&SchublerA(1999)Micro-PIXEstudiesof
elementaldistributioninCd-accumulatingBrassicajunceaL.
89
nB:Interaction
withMaterialsandAtoms158:329–334
SchutzendubelA&PolleA(2002)Plantresponstoabiotic
stress:heavymetal-inducedoxidativestressandprotection
.53:1351–1365
SchwartzC,MorelJL,SaumierS,WhitingSN&BakerAJM
(1999)Rootdevelopmentofthezinc-hyperaccumulatorplant
Thlaspicaerulescensasaffectedbymetalorigin,contentand
oil208:103–115
ShanksJV&MorganJ(1999)Plant‘hairyroot’.
hnol.10:151–155
ShannJR(1995)Theroleofplantsandplant/microbialsystems
Perspect.103:
13–15
ShenZG,ZhaoFJ&McGrathSP(1997)Uptakeandtransport
ofzincinthehyperaccumulatorThlaspicaerulescensandthe
ellEnvi-
ron.20:898–906
SinghOV,LabanaS,PandeyG,BudhirajaR&JainRK
(2003)Phytoremediation:anoverviewofmetallicion
hnol.
61:405–412
SongW-Y,SohnEJ,MartinoiaE,LeeYJ,YangY-Y,Jasinski
M,ForestierC,HwangI&LeeY(2003)Engineering
toleranceandaccumulationofleadandcadmiumintrans-
hnol.21:914–919
StompAM,HanKH,WilbertS,GordonMP&Cunningham
SD(1994)Geneticstrategiesforenhancingphytoremedia-
.721:481–491
ThomasJC,DaviesEC,MalickFK,EndreszlC,WilliamsCR,
AbbasM,PetrellaS,SwisherK,PerronM,EdwardsR,
OstenkowskiP,UrbanczykN,WiendWN&MurrayKS
(2003)Yeastmetallothioneinintransgenictobaccopromotes
.19:
273–280
TuC,MaLQ&BondadaB(2002)Arnicaccumulationinthe
hyperaccumulatorChinebrakeanditsutilizationpotential
.31:1671–1675
UnitedStatesEnvironmentalProtectionAgency(1992)Selec-
tionofcontroltechnologiesforremediationofleadbattery
/540/S-92/ronmentalPro-
tectionAgency,OfficeofEmergencyandRemedialRe-
spon,Washington,DC,USA
UnitedStatesEnvironmentalProtectionAgency(2000a)
Electrokineticandphytoremediationinsitutreatmentof
metal-contaminatedsoil:/
EnvironmentalProtectionAgency,OfficeofSolidWasteand
EmergencyResponTechnologyInnovationOffice,Wash-
ington,DC,USA
UnitedStatesEnvironmentalProtectionAgency(2000b)Intro-
ductiontophytoremediationEPA/600/R-99/-
ronmentalProtectionAgency,OfficeofRearchand
Development,Cincinnati,OH,USA
VatamaniukOK,BucherEA,WardJT&ReaPA(2002)
Wormstakethe‘phyto’outof‘phytochelatins’.Trends
Biotechnol.20:61–64
VisoottivithP,FrancesconiK&SridokchanW(2002)The
potentialofThaiindigenousplantspeciesforthephytoreme-
.118:
453–461
WangQR,CuiYS,LiuXM,DongYT&ChristieP(2003)Soil
contaminationandplantuptakeofheavymetalsatpolluted
.38:823–838
WangQR,LiuXM,CuiYS,DongYT&ChristieP(2002a)
Responsoflegumesandnon-legumecropspeciestoheavy
n.
.37:
611–621
WangZ,ShanX&ZhangS(2002b)Comparisonbetween
fractionationandbioavailabilityoftraceelementsinrhizo-
phere46:1163–1171
WeberO,ScholzRW,BuhlmannR&GrasmuckD(2001)Risk
perceptionofheavymetalsoilcontaminationandattitudes
alysis21:967–977
WenzelWW,AdrianoDC,SaltD&SmithR(1999)Phytoreme-
diation::SSSA
(Ed),BioremediationofContaminatedSoils(pp457–508)
AgronomyMonographno.37,SSSA,Madison,WI,USA
WhitingSN,LeakeJR,McGrathSP&BakerAJM(2000)
PositiverespontoZnandCdbyrootsoftheZnandCd
tol.145:
199–210
WilliamsLE,PittmanJK&HallJL(2000)Emergingmech-
m.
(BBA)-Biomembranes1465:104–126
WongMH(2003)Ecologicalrestorationofminedegraded
soils,-
sphere50:775–780
ZhangW,CaiY,TuC&MaLQ(2002)Arnicspeciationand
Environ.300:167–177
ZhaoFJ,LombiE,BreedonT&McGrathSP(2000)Zinc
hyperaccumulationandcellulardistributioninArabidopsis
ellEnviron.23:507–514
ZhaoFJ,HamonRE&McLaughlinMJ(2001)Rootexudates
ofthehyperaccumulatorThlaspicaerulescensdonotenhance
tol.151:613–620
ZhuYL,Pilon-SmitsEA,JouaninL&TerryN(1999a)
OverexpressionofglutathionesynthetainIndianmustard
hys-
iol.119:73–80
ZhuYL,Pilon-SmitsEA,TarunAS,WeberSU,JouaninL&
TerryN(1999b)Cadmiumtoleranceandaccumulationin
Indianmustardinhancedbyoverexpressinggamma-
hysiol.121:1169–1178
90
本文发布于:2022-11-24 17:25:28,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/90/13215.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |