概率的意义是什么与表示方法
随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。下面是给大家整理的概率的意义是什么与表示方法,希望能帮到大家!
概率的意义
1、概率的意义
一般地,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P
概率区别频率
对事件发生可能性大小的量化引入“概率”。***重复试验总次数n,事件A发生的频数μ,事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值?如果有,就称频率μ/n的稳定值p为事件A发生的概率,记作P(A)=p(概率的统计定义)。
P(A)是客观的,而Fn(A)是依赖经验的。统计中有时也用n很大的时候的Fn(A)值当概率的近似值。
概率的性质
概率具有以下7个不同的性质:
性质1:P(Φ)=0;
性质2:(有限可加性)当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An);
性质3:对于任意一个事件A:P(A)=1-P(非A);
性质4:当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B);
性质5:对于任意一个事件A,P(A)≤1;
性质6:对任意两个事件A和B,P(B-A)=P(B)-P(AB);
性质7:(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。
概型
古典概型
古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)= ,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概型定义,或称之为概率的古典定义。历史上古典概型是由研究诸如掷骰子一类赌博游戏中的'问题引起的。计算古典概型,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程 。
几何概型
几何概型若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。几何概型的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概型的一个典型例子 。
设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概型。若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。
在概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。
概率论
概率论和数理统计的思想方法已经渗透到自然科学和社会科学的许多领域,应用范围相当广泛。所以概率论的学习对我们来说很重要,而我们该去如何学好概率论那?
一学期的概率论学习很快就过去了,经过了一个学期的概率论学习,让我了解到概率论是一门逻辑性很强的学科,学好概率论可以提高分析问题、解决问题,搜集和处理信息的能力。怎样才能学好概率论?可从以下方面着手。上课认真听讲,课后及时复习。适当做题,养成良好的解题习惯。学习新知识,要特别重视课上的学习效率,寻求正确的学习方法。上课时要紧跟老师思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同,同时要注意做笔记。课后做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,不要边做题边翻课本,那样只是暂时的明白,离开书什么也不知道,认真***完成作业,勤于思考。还应该自己独自认真分析题目,尽量自己解决所有老师安排的习题,适当还做点相关资料。经常进行整理和归纳总结。要多做题目,熟悉各种题型。首先要从基础题入手,以课本上的例习题为准,再找一些课外的习题,以帮助开拓思路,提高自己分析、解决问题的能力。对于一些易错题,要备有错题本,记下自己的错误解法并且写上正确的解法,两者比较找出自己的错误所在,及时更正。平时要养成良好的解题习惯,让自己的精力高度集中,思维敏捷。如果平时解题时随便、粗心、大意等,所以在平时养成良好的解题习惯是非常重要的。
学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是进行学习的内驱力。概率论作为文化基础课,多数学生认为其课抽象、枯燥无味,无新鲜感而应用价值很大。激发起学习的兴趣,这样会有高的学习质量。因此在概率论的学习过程中,要始终注意培养学习的兴趣,使自己既学到必要的知识,又享受到一定的学习乐趣,达到提高学习质量的目的。然而各门课程的特点不同,培养自己学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养自己学习兴趣的积极因素并加以充分利用,这一点是共同的。由于《概率论与数理统计》所研究的问题渗透到我们生活的方方面面,每一个理论都有其直观背景。因此,在学习中,应该致力于从多方面入手,去激发自己的兴趣,使自己在体会每个基本概念、定理和公式的产生过程中,掌握概率论与数理统计解题的思想和方法。学生实际上处于一种被动接受教师所提供知识的地位,所以我们要主动去提高自己的自学能力,培养了自己分析、辩论、理论联系实际、与他人合作等综合能力。总之,在概率论与数理统计学习中,教师“施教之功,贵在引导”,即引导学生去发现生活中的随机现象所隐藏的规律性,掌握概率论与数理统计研究问题的方法,而重点还在于我们自己。
概率论与数理统计是一门有着广泛应用的数学学科,因此在教学中我们应准确把握这门课与自己所学专业的结合点,突出其应用性。在学习过程中,将统计理论与实际问题相结合,培养自己用所学的知识去解决具体实际问题的能力及理论联系实际的作风,从而使自己进一步深化理解统计中的基本概念和基本原理。用时也要培养自己的综合素质和创新能力,仅靠课内教学是不可能完全掌握的。在学习中,要紧紧围绕自己的目标,把课内教学和课外活动作为一个整体来考虑,进行优化设计,形成结合。学生自主成立的概率论与数理统计课外兴趣小组。小组活动的宗旨,是利用课余时间,通过定期组织活动,激发大家的学习兴趣,探讨热点、难点问题,加深对理论知识的学习和理解,拓宽知识面,锻炼思考问题和研究问题的能力。组织课外兴趣小组这种方法对于提高学习效果,提高学员综合素质和创新能力有显著成效。
经过老师和学生自己的共同努力,相信一定会在学习概率论中取得好的成效的。
本文发布于:2022-12-21 07:51:00,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/89/83797.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |