高一数学必修2答案

更新时间:2022-12-08 06:55:00 阅读: 评论:0

高一数学必修2教案

作为一位优秀的人民教师,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。教案要怎么写呢?下面是为大家整理的高一数学必修2教案,欢迎大家分享。

高一数学必修2教案 篇1

一、教学目标

1、知识与技能:

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点

让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的*片,

思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;

②其余各面都是平行四边形;

③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影*片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影*片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影*片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影*片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么*形旋转得到?如何旋转?

(四)巩固深化

练习:课本P7练习1、2;课本P8习题1、1第1、2、3、4、5题

(五)归纳整理

由学生整理学习了哪些内容。

高一数学必修2教案 篇2

一、教学目标

1、知识与技能:掌握画三视*的基本技能,丰富学生的空间想象力。

2、过程与方法:通过学生自己的亲身实践,动手作*,体会三视*的作用。

3、情感态度与价值观:提高学生空间想象力,体会三视*的作用。

二、教学重点

画出简单几何体、简单组合体的三视*;

难点:识别三视*所表示的空间几何体。

三、学法指导

观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景*——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视*:

正视*:光线从几何体的前面向后面正投影,得到的投影*;

侧视*:光线从几何体的左面向右面正投影,得到的投影*;

俯视*:光线从几何体的上面向下面正投影,得到的投影*。

三视*:几何体的正视*、侧视*和俯视*统称为几何体的三视*。

三视*的画法规则:长对正,高平齐,宽相等。

长对正:正视*与俯视*的长相等,且相互对正;

高平齐:正视*与侧视*的高度相等,且相互对齐;

宽相等:俯视*与侧视*的宽度相等。

3、画长方体的三视*:

正视*、侧视*和俯视*分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影*,它们都是平面*形。

长方体的三视*都是长方形,正视*和侧视*、侧视*和俯视*、俯视*和正视*都各有一条边长相等。

4、画圆柱、圆锥的三视*:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视*。

(三)巩固练习

课本P15练习1、2;P20习题1、2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的.三视*

(五)布置作业

课本P20习题1、2[A组]1。

高一数学必修2教案 篇3

【学习引导】

一、自主学习

1.阅读课本练习止。

2.回答问题:

(1)课本内容分成几个层次?每个层次的中心内容是什么?

(2)层次间的联系是什么?

(3)对数函数的定义是什么?

(4)对数函数与指数函数有什么关系?

3.完成练习。

4.小结。

二、方法指导

1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数*象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察*象的特征,找出共性,归纳性质。

2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。

【思考引导】

一、提问题

1.对数函数的自变量和函数分别在指数函数中是什么?

2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

3.是否所有的函数都有反函数?试举例说明。

二、变题目

1.试求下列函数的反函数:

(1);(2);(3);(4)。

2.求下列函数的定义域:

(1);(2);(3)。

3.已知则=;的定义域为。

【总结引导】

1.对数函数的有关概念。

(1)把函数叫做对数函数,叫做对数函数的底数。

(2)以10为底数的对数函数为常用对数函数。

(3)以无理数为底数的对数函数为自然对数函数。

2.反函数的概念。

在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。

3.与对数函数有关的定义域的求法:

4.举例说明如何求反函数。

【拓展引导】

一、课外作业:习题3-5A组1,2,3,B组1,

二、课外思考:

1.求定义域:

2.求使函数的函数值恒为负值的的取值范围。

本文发布于:2022-12-08 06:55:00,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/89/7055.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:高一   答案   数学
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图