数量关系几何问题解题技巧

更新时间:2022-12-25 14:07:00 阅读: 评论:0

数学数量关系解题技巧

数学运算主要考查考生理解、把握事物间量化关系和解决数量关系问题的能力,对于一些数量之间的计算也是其中的一部分。下面是整理的数学数量关系解题技巧,欢迎查看。

数学数量关系解题技巧 篇1

一、特值法

所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于只需要把握整体分析的数学运算题非常有效。其中“有效设‘1’法”是最常用的特值法。

例题:某村的一块试验田,去年种植普通水稻,今年该试验田的1/3种上超级水稻,收割时发现该试验田的水稻总产量是去年总产量的1.5倍。如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是:

A.5:2 B.4:3 C.3:1 D.2:1

技巧分析:取特殊值。设普通水稻的产量是1,则去年的总产量是1,今年的总产量就是1.5,今年普通水稻产量为2/3,超级水稻产量为1.5-2/3,而超级水稻只占1/3,所以如果都种超级水稻的产量就是3×(1.5-2/3),那么超级水稻的平均产量与普通水稻的平均产量之比是3×(1.5-2/3):1=2.5:1=5:2。故答案为A。

二、分合法

分合法主要包括分类讨论法和分步讨论法两种,重点应用于排列组合问题中。在解答某些数学运算问题时,会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。而分步讨论法则是指有时候有些问题我们一步是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决。

例题:有一批长度分别为3、4、5、6和7厘米的细木条,它们的数量足够多,从中适当选取3根木条作为三角形的三条边,可能围成多少个不同的三角形?

A.25个 B.28个 C.30个 D.32个

技巧分析:分情况讨论,(1)等边三角形,有5种;(2)等腰三角形,3为腰时,4,5可为底;4为腰时,3,5,6,7可为底;5为腰时,3,4,6,7可为底;6为腰时,3,4,5,7可为底;7为腰时,3,4,5,6可为底。(3)三边互不相等时,3,4,7不能构成三角形,共有-1=9种。综上所述,共有5+2+4+4+4+4+9=32个。故答案为D。

三、方程法

将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式,通过求解未知数的值,来解应用题的方法。方程法应用较为广泛,公务员考试数学运算部分有相当一部分的题目都可以通过方程法来求解。应用广泛,思维要求不高,易于理解和掌握。

例题:下图是由9个等边三角形拼成的六边形,现已知中间最小的等边三角形的边长是a,问这个六边形的周长是多少?

A.30a B.32a C.34a D.无法计算

技巧分析:由图可知,设最大的等边三角形的边长为x,则可知第二大的等边三角形的边长为x-a,第三大的等边三角形的边长为x-2a。第四大的等边三角形也即最小的等边三角形的边长为x-3a,从图中可知最大等边三角形是最小的等边三角形的'边长的2倍,由此可知,x=2(x-3a),解得x=6a,由此可得周长为6a+5a+5a+4a+4a+3a+3a=30a。故答案为A。

四、比例法

根据题干中相关比例数据,解题过程中将各部分份数正确画出来,进行分析,往往能简化难题,加速解题。

例题:甲、乙两班学生到离学校24千米的飞机场参观。但只有一辆汽车,一次只能乘坐一个班的学生,为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某次下车后再步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生,如果两班学生步行的速度相同,汽车速度是他们步行速度的7倍,那么汽车在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场?

A.1.5 B.2.4 C.3.6 D.4.8

技巧分析:甲先坐车,乙走路,当汽车把甲班送到C点,甲班学生下车走路,汽车返回在B点处接乙班的学生,根据时间一定,路程的比就等于速度的比:简单化下图:

时间一定,路程比等于速度比。所以乙走的路程AB比上车走的路程AB+2BC(因为是到了C点再回到B点,所以是2BC)

即AB:AB+2BC=1:7 ,AB:2BC=1:6 ,AB:BC=1:3

同理BC:CD=3:1 ,所以AB:BC:CD=1:3:1

题目问的是“那么汽车在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场”,很明显是求CD段的长度,全程是5份,CD占1份。所以CD=24/5*1=4.8。故答案为D

五、计算代换法

计算代换法是指解数学运算题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。实质是数量之间的转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

例题:计算(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)值。

技巧分析:数量代换为,0.23+0.34=A,0.23+0.34+0.65=B那么原式应为(1+A)*B-(1+B)*A=B-A=0.65。通过数量代换,可以使得计算达到事半功倍的效果。

六、尾数计算法

尾数法是数学运算题解答的一个重要方法,即当四个答案全不相同时,我们可以采用尾数计算法,最后选择出正确答案。

例题:3×999+8×99+4×9+8+7的值是( )

A.3840 B.3855 C.3866 D.3877

技巧解析:运用尾数法。尾数和为7+2+6+8+7=30,尾数为0。故答案为A。

拓展:数量关系计算公式

1.单价×数量=总价

2.单产量×数量=总产量

3.速度×时间=路程

4.工效×时间=工作总量

单位换算

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

(4)1吨=1000千克1千克=1000克=1公斤=2市斤

(5)1公顷=10000平方米1亩=666.666平方米

(6)1升=1立方分米=1000毫升1毫升=1立方厘米

数学数量关系解题技巧 篇2

数量关系计算公式

1、单价×数量=总价 2、单产量×数量=总产量

3、速度×时间=路程 4、工效×时间=工作总量

5、加数+加数=和 6、一个加数=和-另一个加数

7、被减数-减数=差 8、减数=被减数-差 9、被减数=减数+差

10、因数×因数=积 11、一个因数=积÷另一个因数

12、被除数÷除数=商 13、除数=被除数÷商 14、被除数=商×除数

15、有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

几何公式

1.正方形

正方形的周长=边长×4 公式:C=4a

正方形的面积=边长×边长 公式:S=a×a

正方体的体积=边长×边长×边长 公式:V=a×a×a

2.长方形

长方形的周长=(长+宽)×2 公式:C=(a+b)×2

长方形的面积=长×宽 公式:S=a×b

长方体的体积=长×宽×高 公式:V=a×b×h

3.三角形

三角形的面积=底×高÷2 公式:S= a×h÷2

4.平行四边形

平行四边形的面积=底×高 公式:S= a×h

5.梯形

梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2

6.圆

直径=半径×2 公式:d=2r

半径=直径÷2 公式:r= d÷2

圆的周长=圆周率×直径 公式:c=πd =2πr

圆的面积=半径×半径×π 公式:S=πrr

7.圆柱

圆柱的侧面积=底面的周长×高 公式:S=ch=πdh=2πrh

圆柱的表面积=底面的周长×高+两头的圆的面积 公式:S=ch+2s=ch+2πr2

圆柱的总体积=底面积×高 公式:V=Sh

8.圆锥

圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh

9.三角形内角和=180度

本文发布于:2022-12-25 14:07:00,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/89/115980.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:几何   数量   关系   技巧
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图