MorphingAircraftConcepts,Classifications,andChallenges
NextGenAeronautics,Inc.
2780SkyparkDr.,Suite400,Torrance,CA90505
ABSTRACT
Amorphingaircraftcanbedefinedasanaircraftthatchangesconfigurationtomaximizeitsperformanceatradically
onfigurationchangescantakeplaceinanypartoftheaircraft,ge,wing,
engine,rphingisnaturallythemostimportantaspectofaircraftmorphingasitdictatestheaircraft
performanceinagivenflightcondition,andhasbeenofinteresttotheaircraftdesignerssincethebeginningofthe
flight,prearchefforts(mainlyunder
DARPAandNASAsponsorships)however,arefocusingonevenmoredramaticconfigurationchangessuchas200%
changeinaspectratio,50%changeinwingarea,5ochangeinwingtwist,and20ochangeinwingsweeptolaythe
nggeometryandconfigurationchanges,whileextremely
challenging,canbeconceptuallyachievedinavarietyofways–folding,hiding,telescoping,expanding,and
contractingawing,couplinganddecouplingmultiplewinggments,onceptscanbeclassifiedunderafew
‘independent’categoriesandsub-cat
paperprents:1)areviewofpriorworkleadingtocurrentR&Defforts,2)classificationofmorphingdesigns,and3)a
summaryoftechnicalchallengencounteredindesigningamorphingaircraft.
INTRODUCTION
Ifamorphingaircraftisdefinedmerelyasanaircraftthatchangesitsconfigurationin-flight,itcanbeenthat
efirstsuccessfulcontrolledandpoweredflightbytheWrightbrothers
invohen,controlsurfacesintheformof
aileronsandelevatorshavrmore,inorder
toreducethedrag,alsoe
hesmallchangescanbetechnically
termedasmorphing,theyareeithernecessaryenablersforacontrolledflightorcontributorstotheimproved
ult,thetechnologiesdonotnecessarilyallowanaircrafttoperform
mple,whilealong-enduranceaircraft(Hawk,Fig.1-a)aidedwith
thenecessarycontrolsurfacescanloiteroveratargetforalongtime,itcannotflyathigh-speedlikeX-45(Fig.1-b).
Table1summarizeshowincrea
example,itcanbeenthatforefficientlow-speedflight,theaircraftshouldhavehighaspectratioandlowsweep
rytothis,ore,inorderto
havethesameaircraftflydiversifiedmissions,itshouldbecapableofmakinglargeconfigurationchangesinan
whataircraftdesignersaimtoachievebydevelopingmorphingaircraft
technology.
Wingsarethemostinfluen,theirshapeand
ore,wingmorphinghasbeenofamajor
findveralpreviousdesigns,whichbringsmallandlarge
shapeandsizechangershavealso
attemptedchangingextction,we
veyislimitedtothodesignswhichhavebeeneithertestedin
fter,weclassifythedesignsinveralcategoriesbaduponthebasic
y,weprentthechallengesfacedinthe
designofmorphingaircraft,whichareinadditiontothofoundindesigningaconventionalaircraft.
SmartStructuresandMaterials2004:IndustrialandCommercialApplicationsofSmart
StructuresTechnologies,on,ProceedingsofSPIEVol.5388
(SPIE,Bellingham,WA,2004)·0277-786X/04/$15·doi:10.1117/12.544212
213
DownloadedFrom:/on03/25/2014TermsofU:/terms
Table1:Effectsofwinggeometricparametersonaircraftperformance
AirfoilThickness/Chord
Airfoilcharacteristics,laminar/turbulenttransitionAirfoilThicknessDistribution
Improvedlow-speedairfoilperformance
Improvedhigh-speedairfoilperformance
LeadingEdgeRadius
Improvedlow-speedairfoilperformance
Improvedhigh-speedairfoilperformanceRatio
Zero-liftangleofattack,airfoilefficiency,parationbehaviorAirfoilCamber
Preventstipstallbehavior;SpanwiliftdistributionWingTwistDistribution
Wingefficiency(spanwiliftdistribution);InduceddragWingTaperRatio
IncreadcriticalMachno.,dihedraleffectDecreadhigh-speeddrag
IncreadC
Lmax
WingSweep
IncreadRollingmomentcapability,lateralstability
Increadmaximumspeed
WingDihedral
IncreadL/D,loitertime,cruidistance,turnratesDecread:enginerequirements
Increadmaximumspeed;Decreadparasiticdrag
WingAspectRatio
Increadlift,loadfactorcapability
Decreadparasiticdrag
WingPlanArea
EffectsofVariability–allotherparametersunchangedParameter
(a)(b)
Figure1:Widelydifferentaircraftconfigurationsareinvolvedinhighandlow-speedflights:
a)GlobalHawkandb)X-45.
SURVEYOFMORPHINGAIRCRAFT
Inthisction,wepresldbenoted
herethatthisveyhasbeendividedinto
largeandsmallwingmorphingdesigns,fulagemorphing,lowingsubctionprents
examplesineachofthecategories:
ingplanformchange
Here,weincludromtheconventional
wingflapdesignsforlandingandtakeoff,oneofthefirsteffortsinthisdirectionwasthevariablecamberwingdesign
gnedavariablecamberwingforbi-planesandtri-planes,andperformed
structuralandwindtunneltesttovalidatetheconcept(Fig.2,Parker,1920).Themainideaherewastouflexible
wing(oneforbi-planeandtwofortri-plane)inordertosupplementtheliftgeneratedbytherigidwingwhiletheplane
design,onesparwasplacedattheleadingedgeandanotherabouttwo-thirdsofthe
tionbetweenthesparswasmadeflexible,was
ore,
athighspeed,thevariablecamberwingwasplacedinsuchawaythatitalignedwiththeairstreamwithnocamber,and
speed,whentheangle-of-attackoftheplanewasincread,theflexible
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
wingexpesultedinacamberedwing
ernaltrussstructurepreventedthewingfromcamberingafteracertain
discusdmeritsanddemeritsofchangingwingsurfaceareaandtheangle-of-incidenceforreducingthe
lleinthenextfewparagraphs,veral
designerslaterconsideredthemorphingideas.
(a)(b)
Figure2:SmoothcamberchangedesignpropodbyParkerin1920:a)variablecamberribdesignandb)vector
diagramoftheforcesforbi-planeinnegativestagger(Parker,1920).
tiontochangeinthe
camber,ignhadachordexpansionmechanismforaone-atermonoplane,and
wasgrantedapatentin1933(Fig.3-a;Burnelli,1933).ThiswingwasudintheBurnelliGX-3aircraft,whichfirst
flewin1929(Fig.3-b).Themainpor
leadingandtrailingedgeportionsmovedoutwardanddownwardinordertochangetheareaandthecamberofthe
ftparalleltotheforwardsparwascontrolledbyahandwheelwhilethatrunningparalleltotherearspar
rtominimizethemovementofthecenterofpressure,the
mechanismwasdesignedinsuchawaythatitprovidedhighermovementintheleadingedgethaninthetrailingedge.
(a)(b)
Figure3:VariableareaandcamberdesignbyBurnelli:a)mechanismasshownintheUSPatent1,917,428(1933)and
b)aircraftBurnelliGX-3fittedwiththevariableareaandcamberwing(1937)
In1937,aevofUSSRdesignedatelescopicwingaircraft,namedRK(Fig.4-a;Shavrov,1994).The
telescopicmechanismconsistedofsixchord-wioverlappingwingctionsthatudtoextendfromeachsideofthe
fulagetill2/escopicpartwasretractedandextendedusingsteelwire,drivenmanually
1941,Bakashaevmodifiedthedesignbyfittingtelescopicwings(Fig.
4-b).design,atelescopicgloveutoextendfromthefulagetocoverthe
trolsurfaceswerelocatedintherearwing,andtheywerenot
edtotheareachangeof44%
Vol.5388215
DownloadedFrom:/on03/25/2014TermsofU:/terms
intheRKdesign,theRK-Idesignwasabletochangeitswingareabyasmuchas135%.Thoughtheaircraftdidnot
gointotheproductionpha,thedesignswereconsideredsuccessful.
(a)(b)
Figure4:ev:a)RK(1937)andb)RK-I(1941)
ThefirstvariableincidencewingwasdesignedfortheaircraftXF-91,alsoknownas“Thunderceptor”,byRepublic
AircraftCorporationin1949(Fig.5-a).Theincidenceofwingsofthisrocket-poweredsupersonicaircraftcouldbe
hehighangle-of-attackwasudfortakeoffandlanding,thelowangle-of-attackconfiguration
ghthemaximumspeed
ofthisaircraftwas984mph,itndurancewasquitelow(25min).ThiswasoneofthereasonswhyXF-91wasnotput
intoproductiondespitemakingveralsuccessfultestflights.
Anothervariable-incidencewingwasdesignedin1955byChance-VoughtforF-8Crusader(Fig.5-b).Thewingwas
romprovidinglowspeedtake-offandlandingcapability,italso
enabledthepilottomaintainthefulageparalleltocarrierdeckorrunwayforbettervisibilityintheelevated
tion,theentireleadingedgeandtheaileronscouldbeloweredtoincreatheeffectivecamberofthe
wingandconquentlyreduceapproachandlandingspeed.
(a)(b)
Figure5:Thevariableincidencewingaircraft:a)RepublicXF-91"Thunderceptor"(1949)andb)VoughtF8U
Crusader(1955).
Variablesweepwing(swingwing)
sweepingthewing,helpstheaircraftintake-offand
stattemptinthisdirectionwasmadebyGermanMesrschmitt,whodevelopedP-1101(Fig.6-a)in
epanglecouldbealteredonlyfrom35oto45o,andthattoowhiletheaircraftwasontheground.
In-flightsweepanglechangewasfirstachievedinX-5,builtbyBellAircraftCompanyofUSAin1952(Fig.6-b).The
essfullydemonstratedtheswingwingconceptbyshowing
reduceddragandimprovedperforma
ofthemajorchallengesfacedbythedesignerofX-5wastocompensateforthechangeinthecenterofgravitylocation
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
end,theydevelopedamechanismtopushtheentirewing
asmblybyasmuchas27’.
(a)(b)
Figure6:Thefirstswingwingaircraft:a)MesrschmittP-1101(1944)andb)BellX-5(1952).
1952,Grummanbuiltafighter,namedXF10F-1,
whichcouldchangeitssweepfrom13.5oto42.5o(Fig.7-a).Itdemonstratedthehandlingproblemsofswing-wing
aircraft,latersolvedbythedevelopmentoffixedwingroot“gloves”.Italsoudfull-spanslatsandFlowerflaps
extendingover80%heaircraftsufferedfrom
veralairframe,engine,stability,andcontrolproblems,theswingwingtechnologywasproventobeeffectiveand
eofthetwoXF10F-1swasbuiltandtheprogramwasdiscontinuedduetoveraltechnological
difficulties.
ThefirstproductionaircraftwithswingwingcapabilitywasGeneralDynamicsbuiltF-111Aardvark(Fig.7-b).Itwas
developedundertheTacticalFighterExperimental(TFX)programaimedtoproduceasingleaircrafttofulfillaNavy
fleetdefenintercestF-111flewin
ngsfullyextended,theF-111couldtakeoffandlandinaslittleas2,ngsfully
sweptback,itcouldreachaspeedinexcessofMach2.F-111exhibitedaveryhightrimdragatsupersonicspeeddue
slatercorrectedinthedesignofF-14,whichudamoreoutboardpivot
F-111wentintoproductionlinefortheAirForce,it
didencounterveralproblemsduetostructuralfailures,lossofdirectionalstability,enginesurge,andstall(later
solvedbyamajorinletredesign).Theswingwingdesigndidnotstophere,butcontinuedtobethepartofveralhigh
performanceaircraftsuchasMig-23(USSR,1967),GrummanF-14Tomcat(1970),andRockwellB-1BLancer(1983).
(a)(b)
Figure7:Theswingwingaircraft:a)XF10F-1Jaguar(1952)andb)F-111Aardvark(1964).
Theuccessfullyimplementedina
single-atexperimentalsailplanebuiltbyFritzJohlofSouthAfricain1970(Fig.8-a;Stinton,2001).Itachieveda
chordchangeof100%usinganinternal“lazy-tongs”actedthechordtoincreathespeedofthe
configuration,thewinghadhighaspectratioandlowarea,
Vol.5388217
DownloadedFrom:/on03/25/2014TermsofU:/terms
thermal,itincreadthewingarea,chordand
cambertoreducethespeedofthesailplanesoastomakeaslowturnintherisingmassofair.
AnotheruniquewingmorphingcanbeeninthedesignofAmes-Dryden-1(AD-1)ObliqueWing,firstflownin1979
(Fig.8-b).,andtherearchwasconductedbyNASA
craftwasdesignedtorotateonitscenterpivot,sothatitcouldbetatitsmost
rspeeds,duringtakeoffsandlandings,thewing
waircraftgainedspeed,thewing
wouldbepivotedtoincreatheobliqueangle,gcouldbesweptinonlyone
direction(righttipmovingforward).Itflew79timesandgatheredflightdataonhandlingqualitiesandaerodynamicsat
differentangularpositionsandspeeds.
(a)(b)
Figure8:Variablegeometrywings:a)variablechordandcambersailplaneJ-5(1970)andb)Obliquewing(1979).
AircraftirstudintheRussianMiG
105-11space-plane,whichflewon11thOctober1976(Fig.9).DesignatedasExperimentalPasngerOrbitalAircraft
(EPOS),thiswingofthisspace-planewasdesignedtobeudasstabilizerbyttingit25oabovehorizontalduring
launch,orbit,ewing,whentinthehorizontalposition,wasdesignedtoworkastheregular
totalofeightflights,endingon1stSeptember1978,furtherdevelopment
ofthisplanewasstoppedaftergatheringdatatocharacterizeitssubsonicaerodynamics.
AmorerecenttelescopicwingdesigncanbefoundinthepatentbyGeversAircraft,Inc(Gevers,1998).Thewingspan
ofthisdesigncanchangeby100%.Thefinalaircraftissuppodtocruiover280mphwhenthewingisretractedand
escopicwingudinthispropodaircraftis
compodofacentralwingctionwithcompletelyretractablehighliftctionswhichareguidedonarollerinaspan-
creasthewingspan,area,er,thelandinggearofthisconceptual
aircraftisdesignedsothatitcantakeoffandlandonsnow,water,scalemodelofthisaircraft
wasalsotestedinawindtunnel(Geverswebsite).
(a)(b)
Figure9:Examplesofmorphingaircraft:a)variabledihedralspaceplaneMiG105-11(1976)andb)Telescopicwing
ofGevers(1998).
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
ingplanformchange
Inthisction,wediscussaircraftcapableofsmallwingplanformchanges,
sakeofbrevity,hdesign,forexample,isataillessplaneaircraft
inventedbyShortBrothers&HarlandLtd(Fig.10-a).Firstflownin1953,thisaircrafthadall-movingwingtipsthat
ntendedtotesttheso-called“aero-isoclinic”wing
awastopivotthewingtipssothattheycanmaintainthesameincidenceevenasthewingflexedin
flight(Butler,1999).Thepivotedwingtipsactedbothalevatorsandailerontocontrolthepitch(rotatedtogether)and
roll(rotatedopposite).
AnotherdevelopmentintheareaofrotatingtipwasValkireXB-70,designedbyNorthAmericanin1964(Fig.10-b).
Thewingtip,whichthusfarreprentsthelargestmovableaerodynamicdevice,wasrotatedto25obelowhorizontal
whenflyingbetween300knotstoMach1.4oandto65ofromhorizontalwhenflyingfromMach1.4toMach3+.
Loweringofthewingtipincreadtheverticalarea,speed,itcreatedshock-
wave-generated“compressionlift”thatpartiallysupportedtheaircraftweight.
(a)(b)
Figure10:Wingswithrotatingendparts:a)ShortSB.4Sherpa(1953)andb)ValkireXB-70(1964)
Cambercontrolofwingsusinthe
hetwo,theleadingedgecontrolsurfacesare
-16FightingFalcon,developedbyGeneralDynamicsandfirstflownin1974,usleading
edgeflapstochangethecamberofitswings(Fig.11-a).Thewinghasalsoatof“flaperons”thatcombinestheroles
peronsoperateasconventionalaileronsforcontrollingtheaircraftduringconventional
takeoffsandlandings,theycanbehangeddownbyasmuchas20o,operatingasflaps.
TherecentActiveAeroelasticWing(AAW)programofNASAudtwistingofwingsforprimarymaneuveringroll
controlattransonicandsupersonicspeeds(Fig.11-b).UsinganF/A-18asthetest-bed,thetwistinthewingwascaud
dingedgeflapsofF/A-18weredividedintoparateinboardandoutboard
gments,dingedgeflapofthisaircraftcouldchangefrom10oupto34o
gtheleadingedgeflapsandaileronstotwistthewing,onecouldcreatedesirablerollauthoritywithout
increasingthewingstiffnessandweight.
(a)(b)
Figure11:Exampleofsmallmorphingintheformofcontrolsurfaces:a)movingleadingedgecontrolsurfacesudby
F-16FightingFalcon(1974)andActiveAeroelasticWingProgramofNASA(2002).
Vol.5388219
DownloadedFrom:/on03/25/2014TermsofU:/terms
Theconventionalcontrolsurfacesproducediscontinuouscurvatures,ttoproduceasmooth
camberchannghadan
internalmechanismtoflextheouterwingskinandproduceahighcamberctionforsubsonicspeeds,asupercritical
ctionfortransonicspeeds,dingandtrailingedgeflapscould
rotateby0-5oand2-5o,moothnessoftheresultingwingsurface,thedragwasfoundtodecrea
byaround7percentaalflight
temhadfourautomaticcontrolmodes:(1)
ManeuverCamberControl-adjustingcambershapeforpeakaerodynamicefficiency;(2)CruiCamberControl-for
maximumspeedatanyaltitudeandpowertting;(3)ManeuverLoadControl-providingthehighestpossibleaircraft
loadfactor(4)ManeuverEnhancementAlleviation-inpartattemptingtoreducetheeffectsofgustsonairplaneride.
TheAFTI/rautomaticmodesweretestedinflight
withsatisfactoryresults.
(a)(b)
Fig.12:MissionAdaptiveWing(1985):a)installedintheaircraftF-111andb)wingcross-ctionsindifferent
configurations.
Usingcompliantmechanism,edsmoothshapechangeoftheleadingandtrailingedgeflaps
(e).Usingawind-tunnelexperiment,conductedin1998,theynoteda25%increainlift
coefficientsanda51%increainthelift-to-dragratioastheleadingedgecamberwaschangedfrom0oto6o(Fig.13-
a).Similarly,deflectingthetrailingedgefrom0oto6o,theyshowedalowairfoildragof0.006fortheliftcoefficient
rangingfrom0to1.5(Fig.13-b).Thixperimentclearlyshowedtheadvantagesofhavingasmoothwingcamberover
thetraditionaldiscretecontrolsurfaces.
(a)(b)
Figure13:Smoothcamberingusingcompliantmechanism:a)leadingedge(1998)andb)trailingedge.
SmoothcamberingwasalsoappliedinaNorthropUCAVtestmodel(Fig.14;Kudva,2002).Thefinalwindtunneltest
nstratedhighactuationrate(80
deg/c),largedeflection(20o),hinge-less,smoothlycontouredcontrolsurfaceswithchord-wiandspan-wishape
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
70differentcontrolsurf
showedanimprovementinrollingmomentcoefficientby~17%rimprovementswereobtained
forpitchingmomentcoefficients.
(a)(b)
Figure14:TheNorthropSmartWing(2001):a)testmodelintheNASAwindtunnelandb)internalstructures.
gemorphing
AnexampleoffulagemorphingcanbeeninConcorde,whichwasbuiltbyAerospatialeandBritishAerospaceand
ingand
take-off,itneededore,itsnowas
droopeddown(5degreesfortake-offand12.5degreesforlanding,Fig.15-a).
morphing
Amorphinginengineconfigurationcanbeufulforaccommodatingchangingspeedoftheaircraftandforchanging
pleofthrustvectoringcanbeeninV22Osprey,whichcantake-offandlandlikea
helicopterand,otherwiflylikearegularairplane.
(a)(b)
Figure15:Examplesofengineandfulagemorphing:a)concord(1969)andb)V22Osprey(2000).
CLASSIFICATIONOFMORPHINGAIRCRAFTTECHNOLOGY
Fromthepreviousction,ally,
wingmorphingcanbeachievedusingveraltechniquessuchashidingonepartunderanother,rotatinggmentsorthe
wholewing,stwobroadergroups
inwhichallthemorphingaircraftwingscanbeendivided:a)roboticdesign,and(b)obotic
design,ore,theroboticwingdesignis
heformerleadstovariablesweep,
variableincidence,andvariabledihedralwings,thelattergivesritoleadingedgecontrolsurface,trailingedgecontrol
surfaces,foldingtip,ganicdesign,theinternalmechanismletstheoverallsizeofthe
ngeinthesizeofthewingcantakeeffecteitherbystretchingthewingorbyslidingapartofthe
Vol.5388221
DownloadedFrom:/on03/25/2014TermsofU:/terms
dingwingdesign,someparts
ofesinthiscategoryinclude
telescopingwingwherethecompletewingisdividedintotwopartsinthespan-widirectionandoneparthidesinside
armechanismisappliedfordividingandhidingthewinginthechord-widirectiongivingrito
rconceptthathasbeendemonstratedinthiscategoryistheso-calledglovewing,wheretwo
viousctiongivexampleof
everycategoryprentedinFig.16.
TECHNICALCHALLENGES
Usingconventionalstructure,actuator,skin,engine,andcontroltechnologies,itemsquitedifficulttoaccommodate
differenttypesofmorphingmechanismsinthesameaircraft,andstillkeepitstructurallystrong,lightweight,
controllable,ollowingparagraphs,wediscussthemainissuesconcerningthe
morphingaircraftdesign:
lDesignConfigurations
Unlikethedesignofaconventionalaircraft,amorphingaircraftusuallyinvolvesveraldifferentflightregimesand
ore,thedesignerhastocomeupwithoptimaldesignsforallthoflightconditionsand
mekely,thedesignerwillhaveto
alsoconsiderthemovementofaerodynamiccenterandcenterofgravityduetochangingaircraftconfigurations.
ures
Conventioinspars,ribs,and
nternalstructuremoves,theskinshouldbeableto
,inturn,makestheskinvirtuallyanon-load-carrying
naswellasitsattachmentwiththesubstructureshouldbe
edesigns,thefatigueandhysteresiffectsduetorepeated
Glove
Telescopic
Wing
FoldingTipTEControl
Dihedral
Incidence
Chord
Extension
StretchingSurfacesRotatingSurfacesSlidingSurfaces
Span
Extension
LEControl
RotationofWhole
Wing
Sweep
Smooth
Cambering
WingBox
Surface
LE&TE
Surfaces
LE&TEExtension
Rotationof
Segments
Spoiler
MorphingAircraftTechnology
OrganicDesign
RoboticDesign
Engine
Fulage/Tail
Wing
Area
change
Fig.16:Classificationofmorphingaircrafttechnology
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
omplexitiesleadtoaheavierstructureanddemandnew,efficientways
flexibleskindesign,highstrainmaterialswithgoodstructuralproperties
(ticdeformation,fatigue,orenvironmentaleffect)andrequiringlessactuationforceneedstobedeveloped.
ion
Theconfigurationchangeofaircraftin-flightwillrequiretheactuatorstoworkagainstaerodynamicandfrictionforces.
Thisdemandsbiggerandstrongeractuators,whichmaycreatespaceallocationproblems,willneedhighpower,and
ore,itisimperativetofindnewwaysofactuatione.g.,usingaerodynamicforces
forsupplementalactuation,soastominimizethespace,weight,andpowerrequirements.
namics
Theskindesyshoulditprovidesurface
continuity,mple,intheslidingskindesign,onehastomakesure
thatthegapsareminimalandintheflexibleskindesign,thewingshouldhaveminimaldimplingbothinretractedand
er,itisquiteachallengetodesignamorphingwingthatmaintainsoptimalairfoilshapesat
alltheintendedconfigurations.
ls
Therearetwomainchallengesinthecontrolaspectsofamorphingaircraft,whicharenotprentinaconventional
stoaccommodatetheconventionalcontrolsurfaces,whichisdifficultbecauofthemovingsurfaces.
Moreover,inaccommodatingtheconventionalcontrolsurfaces,onehastokeepinmindtheireffectivenessinall
oblemcouldbeovercomebydevelopingnecessarycontrolmechanismsandalgorithmsforusing
ca,themechanismhastobedevelopedthatcanbereliableeven
inaveryhighfrequencyoperationandneedssubstantiallylesspowerwhencomparedtothatneededinchangingthe
ondchallengepertainstointernalcoordinationofthemovingsubstructuresand
actuatorsinordertominimizehuma
parallelordistributedactuatorsareudforincreadreliabilityandbettercontrolauthority,thecontrollershouldbe
programmedtoproviderightsignaltoallactuatorsinatime-coordinatedmanner.
Ifthesameaircraftistoperformdrasticallydifferenttasks,thecurrentapproachtoenginedesign,whichusaspecific
flightgmenttooptimizeitsperformance,nce,thesameengineshouldperformwellboth
inlowandhigh-speedconditions,whichmaynecessitatemorphinginlets,nozzle,etc.
ationofthesubsystems
Evenwhendesignsofskin,mechanism,actuator,powersupply,andwingsubstructurearedeveloped,itisstillaquite
difficulttaer,thesubcomponents
shouldnotcomeinthewaywhentheshapeofwingischanging,andshouldbeaccessibleforrepairandmaintenance.
Sincemorphingaircraftarelikelytobesomewhatheavier,newmaterialandstructuretechnologiesneedstobe
i,thefullbenefitsofthemorphingtechnologywill
notberealized.
Vol.5388223
DownloadedFrom:/on03/25/2014TermsofU:/terms
SystemIntegration
•Asmblyinlimitedspace
•Uninhibitedmovement
•Fuelstorage
•Weight
Structures
•Skincapableof
transferringload
•Bendingandtorsional
stiffness
•Weight
Aerodynamics
•SmoothSurface
(nodimplingorgap)
•maintaingoodairfoil
cross-ction
Actuation
•Lowpowerrequirements
(-assistedactuation)
•highefficiency
Engine
•Optimalperformancein
changingflightconditions
Controls
•Asymmetricmorphing
forflightcontrol
•Automaticcontrolof
morphingmechanism
DesignStrategy
•Optimalconfigurations
•Reversiblechanges
•Fuelstorage
•ACshift
CONCLUSIONS
Inthispaper,wesurveyedpastmorphingaircraftdesigns,classifiedthemintodifferentcategories,andprentedthe
issurvey,onecannotethatalmostalltheprevious
designconsideredchangingonlyoneparametertofacilitatetheaircraftflyinginaparticularcondition,ratherthan
tance,theswingwing,glovewing,andthe
telescopicwingdesignschangethesweepangle,chordlength,andwingspan,r,foratruemulti-
missionmorphingaircraft,rtodesignanddevelopa
truemorphingaircraft,oneneedstorethinkalmostallaspectsoftheaircraftdesignincludingskin,ribs,spars,engine,
controlsurface,vesritoveraldesignchallenges,suchasmaintaininggoodaerodynamicprofile,
kinematics,actuation,powersupply,weighmanagement,loadbearingcapabilityofthewing,andtheintegrationofall
thesubsystems,whichneedstobeaddresdbeforeatrulyrevolutionarymorphingaircraftcanbedeveloped.
REFERENCE
vV.B.1994,“TheHistoryofAircraftConstructionintheUSSR,”Mashinostroenie,Moscow.
r,T.,1999,“ControlattheTips:Aero-isoclinicsandTheirInfluenceonDesign,”AirEnthusiast81,pp.
50-55.
,H.F.,1920,“TheParkerVariableCamberWing,”NACAReportNo.77,GovernmentPrintingOffice,
Washington.
li,V.,J.,1933,Aircraft,USPatentNumber1,917,428.
n,D.,2001,TheDesignoftheAirplane,AIAA,Reston,VA.
,J.N.,Sanders,B.,Pinkerton-Florance,J.,Garcia,E.,2002,“TheDARPA/AFRL/NASASmartWing
Program–FinalOverview,”2002SPIEConferenceonSmartStructuresandMaterials,SanDiego,Vol.4698,
No.4.
,D.E.,1998,Multi-purpoAircraft,USPatentNo.5,850,990.
website,/ac/
Fig.17:Technicalchallengencounteredinthedesignofamorphingaircraft.
Vol.5388
DownloadedFrom:/on03/25/2014TermsofU:/terms
本文发布于:2023-01-19 05:09:25,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/92669.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |