精品文档
三角形的外接圆和内切圆
重点:外接圆及内切圆的画法;外心和内心。
难点:知识的综合运用。
知识回顾:
1、什么是三角形的外接圆与内切圆?
关系定义圆心实质半径图示
外接圆
经过三角
形各顶点
的圆
外心
三角形各
边垂直平
分线的交
点
交点到三
角形各顶
点的距离
内切圆
与三角形
各边都相
切的圆
内心
三角形各
内角角平
分线的交
点
交点到三
角形各边
的距离
2、如何画一个三角形的外接圆与内切圆?
画圆的关键:确定圆心;确定半径
3、性质有哪些?
(1)外接圆性质:
锐角三角形外心在三角形内部。
精品文档
直角三角形外心在三角形斜边中点上。
钝角三角形外心在三角形外。
有外心的图形,一定有外接圆。
直角三角形的外心是斜边的中点。
外接圆圆心到三角形各个顶点的距离相等(OA=OB=OC)。
(2)内切圆性质:
三角形一定有内切圆,圆心定在三角形内部。
一般三角形的内切圆半径:r=2S/(a+b+c),r=sqrt[(p-a)(p-b)(p-c)/p]
(a、b、c是3个边,S是面积,p=(a+b+c)/2)
直角三角形的内切圆半径:(a,b是Rt△的2个直角边,c是斜边)
r=(a+b-c)/2两直角边相加的和减去斜边后除以2
r=ab/(a+b+c)两直角边乘积除以直角三角形周长
精品文档
注意:
等边三角形的内心、外心重合。
主体部分:(未完成)
小结:
1、掌握外接圆和内切圆、外心和内心的知识。
2、会画三角形的外接圆和内切圆。
3、解决三角形的外接圆、内切圆半径的问题。
4、有关证明题。
练习:
1、△ABC中,∠A=55度,I是内心,则∠BIC=(117.5)度。
2、△ABC中,∠A=55度,其内切圆切△ABC于D、E、F,则∠FDE=(62.5)
度。
3、三角形的三边长分别为3cm、4cm、5cm,则其内切圆的半径为(1cm)。
4、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆半径(6.5cm)
精品文档
内切圆半径(2cm)。
5、等边三角形外接圆半径与内切圆半径之比(2:1)
本文发布于:2022-11-11 23:41:30,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/908.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |