word
1/2
对数换底公式
[教学目的]使学生理解对数换底公式的意义,掌握其推导方法,初步学会它在对数
式恒等变形中的应用。
[教学重点]对数换底公式的应用
[教学难点]对数换底公式的推导
一、新课引入:
已知lg2=0.3010,lg3=0.4771,求log
6
5=?
像log
6
5这样的对数值是不能直接从常用对数表中查出的。能不能将以5为底的对
数,换成以10为底的对数呢?这就要学习对数换底公式。什么是对数换底公式?怎
样用我们所掌握的知识来得到它呢?又如何运用它呢?这就是本节课要解决的问题。
二、新课讲解:
公式:
b
N
N
a
a
blog
log
log
证明:设
Nlogx
b
,则
Nbx
,两边取以a为底的对数,得
x
Nlogblog
aa
blog
Nlog
x
a
a
,即
blog
Nlog
Nlog
a
a
b
。
1、成立前提:b>0且b≠1,a>0,且a≠1
2、公式应用:对数换底公式的作用在于“换底”,这是对数恒等变形中常用的工具。
一般常换成以10为底。
3、自然对数lnN=log
N
e
三、巩固新课:
例1、求证:1:
1alogblog
ba
2:
blog
m
n
blog
a
n
am
例2、求下列各式的值。
(1)、log98•log3227
(2)、(log43+log83)•(log32+log92)
(3)、log49•log32
(4)、log48•log39
(5)、(log2125+log425+log85)•(log52+log254+log1258)
word
2/2
例3、若log1227=a,试用a表示log616.
解:法一、换成以2为底的对数。
法二、换成以3为底的对数。
法三、换成以10为底的对数。
练习:已知log189=a,18b=5,求log3645。
例4、已知12x=3,12y=2,求
yx
x
1
21
8
的值。
练习:已知
7loglog,5loglog2
48
2
48
abba
,求a•b的值;
例5、有一片树林,现有木材22000方,如果每年比上一年增长2.5%,求15年后约
有多少方木材?
解:设15年后约有木材A方,则
A=22000(1+2.5%)15=22000×
LgA=lg22000+15×
=4.3424+15×
∴A=131840
答:15年后约有木材131840方。
练习:
1、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,
这种细菌由1个可繁殖成()个。
2、在一个容积为a升的容器里满盛着酒精。先向外倒出x升,再用水注满;第二次
又倒出x升溶液,再用水注满;如此操作t次后,容器里剩余的纯酒精为b升,试用
含有a、b、t的式子表示x。
三、小结:对数换底公式:
b
N
N
a
a
blog
log
log
四、作业
本文发布于:2022-12-11 19:08:11,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/87448.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |