(海伦公式)已知三角形三条边长,求面积
2008年12月14日星期日上午11:39
海伦公式:
S=(△)=√[p(p-a)(p-b)(p-c)]
其中p是三角形的周长的一半p=(a+b+c)/2.
~~~~以下转自百度百科~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
海伦公式
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形
的三条边长来求取三角形面积。但根据MorrisKline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我
国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
——————————————————————————————————————————————
注:"Metrica"(《度量论》)手抄本中用s作为半周长,所以
S=√[p(p-a)(p-b)(p-c)]和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,
只需测两点间的距离,就可以方便地导出答案。
证明(1):
与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,
则余弦定理为
cosC=(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
证明(2):
我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土
地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样
根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,
自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
所谓“实”、“隅”指的是,在方程px2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4[c2a2-(c%|2+a2-b2/2)2]
当P=1时,△2=q,
S△=√{1/4[c2a2-(c2+a2-b2/2)2]}
因式分解得
1/16[(c+a)2-b2][b62-(c-a)2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
S=c/2*根号下a^-{(a^-b^+c^)/2c}^.其中c>b>a.
根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形=根号下(p-a)(p-b)(p-c)(p-d)(其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√3
海伦公式的几种另证及其推广
关于三角形的面积计算公式在解题中主要应用的有:
设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p=(a+b+c),则
S△ABC=aha=ab×sinC=rp
=2R2sinAsinBsinC=
=
其中,S△ABC=就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。
海伦公式在解题中有十分重要的应用。
一、海伦公式的变形
S=
=①
=②
=③
=④
=⑤
二、海伦公式的证明
证一勾股定理
分析:先从三角形最基本的计算公式S△ABC=aha入手,运用勾股定理推导出海伦公式。
证明:如图ha⊥BC,根据勾股定理,得:
x=y=
ha===
∴S△ABC=aha=a×=
此时S△ABC为变形④,故得证。
证二:斯氏定理
分析:在证一的基础上运用斯氏定理直接求出ha。
斯氏定理:△ABC边BC上任取一点D,
若BD=u,DC=v,AD=t.则
t2=
证明:由证一可知,u=v=
∴ha2=t2=-
∴S△ABC=aha=a×
=
此时为S△ABC的变形⑤,故得证。
证三:余弦定理
分析:由变形②S=可知,运用余弦定理c2=a2+b2-2abcosC对其进行证明。
证明:要证明S=
则要证S=
=
=ab×sinC
此时S=ab×sinC为三角形计算公式,故得证。
证四:恒等式
分析:考虑运用S△ABC=rp,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。
恒等式:若∠A+∠B+∠C=180○那么
tg·tg+tg·tg+tg·tg=1
证明:如图,tg=①
tg=②
tg=③
根据恒等式,得:
++=
①②③代入,得:
∴r2(x+y+z)=xyz④
如图可知:a+b-c=(x+z)+(x+y)-(z+y)=2x
∴x=同理:y=z=
代入④,得:r2·=
两边同乘以,得:
r2·=
两边开方,得:r·=
左边r·=r·p=S△ABC右边为海伦公式变形①,故得证。
证五:半角定理
半角定理:tg=
tg=
tg=
证明:根据tg==∴r=×y①
同理r=×z②r=×x③
①×②×③,得:r3=×xyz
∵由证一,x==-c=p-c
y==-a=p-a
z==-b=p-b
∴r3=∴r=
∴S△ABC=r·p=故得证。
三、海伦公式的推广
由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的
四边形ABCD中,设p=,则S四边形=
现根据猜想进行证明。
证明:如图,延长DA,CB交于点E。
设EA=eEB=f
∵∠1+∠2=180○∠2+∠3=180○
∴∠1=∠3∴△EAB~△ECD
∴===
解得:e=①f=②
由于S四边形ABCD=S△EAB
将①,②跟b=代入公式变形④,得:
∴S四边形ABCD=
所以,海伦公式的推广得证。
四、海伦公式的推广的应用
海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍。
例题:如图,四边形ABCD内接于圆O中,SABCD=,AD=1,AB=1,CD=2.
求:四边形可能为等腰梯形。
解:设BC=x
由海伦公式的推广,得:
(4-x)(2+x)2=27
x4-12x2-16x+27=0
x2(x2—1)-11x(x-1)-27(x-1)=0
(x-1)(x3+x2-11x-27)=0
x=1或x3+x2-11x-27=0
当x=1时,AD=BC=1
∴四边形可能为等腰梯形。
本文发布于:2022-11-13 04:16:05,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/8743.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |