首页 > 试题

三角函数的定义

更新时间:2022-12-10 16:58:28 阅读: 评论:0

石家庄市2007年中考招生-招的成语


2022年12月10日发(作者:真讨厌)

.

-

..-

三角函数定义

把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点

放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(x,y)。

sin(θ)=y;

cos(θ)=x;

tan(θ)=y/x;

三角函数公式大全

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan²A)

Sin2A=2SinA•CosA

Cos2A=Cos^2A--Sin²A

=2Cos²A—1

=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)³;

cos3A=4(cosA)³-3cosA

tan3a=tana•tan(π/3+a)•tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}?

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

.

-

..-

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

万能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]²}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]²}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a•sin(a)+b•cos(a)=[√(a²+b²)]*sin(a+c)[其中,tan(c)=b/a]

a•sin(a)-b•cos(a)=[√(a²+b²)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)=[sin(a/2)+cos(a/2)]²;

1-sin(a)=[sin(a/2)-cos(a/2)]²;

其他非重点三角函数

csc(a)=1/sin(a)

c(a)=1/cos(a)

双曲函数

sinh(a)=[e^a-e^(-a)]/2

cosh(a)=[e^a+e^(-a)]/2

tgh(a)=sinh(a)/cosh(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

.

-

..-

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A•sin(ωt+θ)+B•sin(ωt+φ)=

√{(A²+B²+2ABcos(θ-φ)}•sin{ωt+arcsin[(A•sinθ+B•sinφ)/√{A²+B²;+2ABcos(θ-φ)}}

√表示根号,包括{……}中的内容

三角函数知识点汇总

1.特殊角的三角函数值:

.

-

..-

2.角度制与弧度制的互化:

3.弧长及扇形面积公式

弧长公式:扇形面积公式:

----是圆心角且为弧度制。r-----是扇形半径

4.任意角的三角函数

设是一个任意角,它的终边上一点p(x,y),

(1)正弦余弦正切

(2)各象限的符号:

5.同角三角函数的基本关系:

(1)平方关系:

.

-

..-

(2)商数关系:

6.诱导公式:记忆口诀:把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。

口诀:函数名称不变,符号看象限.

8、三角函数公式:

两角和与差的三角函数关系

倍角公式

.

-

..-

降幂公式:

升幂公式:

9.解三角形

正弦定理:

余弦定理:

三角形面积定理.

15、正弦函数、余弦函数和正切函数的图象与性质:

.

-

..-

.

-

..-

本文发布于:2022-12-10 16:58:28,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/80354.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图