PPM单位的解读
1、前言
1998年5月1日质量学会召开出版委员会,主任委员卢瑞彦先生(台湾的质量奖个人奖
得奖人,忆华电机总经理)提到一个令人疑惑的问题。多年前他曾经访问美国硅谷旭电公司
(Solectron)(1991年曾获美国国家质量奖),当问到该公司目前的质量水平时,该公司陈董事
长答道说:『经多年的整体改善活动,目前已达到500个ppm的质量水平』。但是卢总经理自己
经营的忆华电机,目前制程质量水平也可以达到200个ppm,是否以忆华的质量水平也应可以
申请美国国家质量奖?可是目前忆华还不曾申请台湾的质量奖,这是否意味着台湾的质量奖较美
国国家质量奖的门坎还高。本人曾经替忆华电机设计实时制程管制系统,系统中要求以dppm为
单位计算制程的质量水平,所以熟知忆华电机质量水平的计算方式,当时就以下例来说明两者
ppm的计算方法不同,而造成质量指针不一致的结果。假设某制程;例如SMT,AI或HI,某
天的生产日报如下:
产品别检点数/台生产台数不良台数合计缺点数
A200点/台1000台5台10点
B100点/台1000台10台20点
C50点/台2000台15台30点
●假如以台为计算基础
p=(5+10+15)/(1,000+1,000+2,000)
=30/4,000
=7,500ppm
即表示每100万台平均有7,500台是不良。
c=(10+20+30)/(1,000+1,000+2,000)
=60/4,000
=0.015dpu
即表示每台平均有0.015个缺点。
●假如以检点为计算基础
μ=(10+20+30)/(200×1,000+100×1,000+50×2,000)
=60/400,000
=150dppm
即表示每100万个检点平均有150个缺点。
以上的解释以100万台为单位及100万个检点为单位,当然要两个ppm的质量指针互
相比较就有所出入。近年来国内信息电子业在国际分工的设计及制造占有举足轻重的地位,客户
对制造商的质量合约常包括规格承认书、质量管理计划及制程统计资料,其中引起最多争议就是
质量水平的计算方式,其间的影响造成订单签不下来或出货签不出去,当然品管人员首当其冲被
老板骂得莫名其妙。早在1993年笔者曾撰文诠释6σ的意义(注1),而今质量学会出版委员会决
定出版一份信息电子业通用质量指针的标准一小册,提供国内业界参考的依据。本文就此项需求
先行提出一些通用的质量指针及符号术语,供信息电子业先进讨论空间,再逐步订出符合大家可
以使用的质量指针标准。
2、主要质量指针的沿革
产品质量特性的记录一般分成计数值或计量值,计数值又以计件或计点为记录,计量值以实
际量测之特性值为记录。自从信息电子业导入MIL-STD-105D表为抽样检验的标准后,质量指
针一直延用MIL-STD-105D表之AQL;目前使用版本为MIL-STD-105E,多年来一直通行于信
息电子业界。AQL在10以下时,可表计件的不良率或计点的缺点数,AQL在10以上时,则表
计点的缺点数或每百件缺点。计量值则以制程能力指数Cp、k(Ca)、Cpk为代表。这些质量指
针的大小,理论上是可以解释其质量意义,譬如AQL=0.3%(以计件不良率表示)其意义为当
检验批的质量水平不良率p达到0.3%时,该批以MIL-STD-105E表验收时,被允收的机率很高
约90%以上,但检验批的实际不良率p太大时;如1%、2%,则检验批被允收的机率很小。因
此,AQL常被用来当成制程的质量指针,以保证交货(交易)时的允收率。制程能力指数也被
拿来衡量产品试作及量产时质量稽核的指针。有些客户要求供货商在试作阶段及量产阶段提报产
品或制程的管制特性,其Cp或Cpk值在多少以上,才能保证不良率p在多少以下。
3、各种质量指针的定义及计算例
近年来,信息电子业受到所谓“6个Sigma”的质量国际标竿(Benchmarking)的影响,大家
纷纷采用“ppm”或“几个Sigma”为质量水平的计量单位,但是对这一些新的名词及术语的定义及
计算方法不同行业有不同的说法,造成业界随客户的要求而无所适从。以下介绍目前流行于业界
的一些质量指针名词及术语。
●计数值计件的质量指针
制程良率(Yield):一般以一制程之投入产品件数与该制程输出良品的件数之比率。如(图1)
说明。
输入1000件输出900件
INPUT1000件950件920件
不良品50件30件20件
(图1)
A制程良率=输出良品件数/输入产品件数
=950/1000
=95.0%
B制程良率=输出良品件数/输入产品件数
=920/950
=96.8%
C制程良率=输出良品件数/输入产品件数
=900/920
=97.8%
全制程良率=输出良品件数/输入产品件数
=900/1000
=90.0%
以上适用于电子零件、半导体等制程,其不良品无法修理而报废者。装配厂的制程,其不良
品大致上都可以修理,修理好的产品,再回线测试,继续装配,如此要定义其良率应以各制程的
初检通过率(FirstTimeYield;FTY)较为合理。
初检通过率(FirstTimeYield;FTY):一制程投入产品件数与第一次检验就通过之件数之比率。
如(图2)说明。
输入1000件输出1000件
INPUT1000件1000件1000件
不良品50件30件20件
(图2)
A制程FTY=输出良品数/输入件数
=950/1000
=95%
B制程FTY=输出良品数/输入件数
=970/1000
=97%
C制程FTY=输出良品数/输入件数
=980/1000
=98%
全制程FTY=A制程FTY×B制程FTY×C制程FTY
=0.95×0.97×0.98
=0.903
=90.3%
如此可知,全制程FTY较(图1)略高,因此以直通率(RolledYield)定义较准确;其定
义为输入件数比上全制程中没有被修理过的件数。
直通率=全制程中没有被修理的件数/输入件数
=900/1000
=90%
全制程之直通率(RolledThroughoutYield):定义为全制程的投入产品件数与通过全制程无缺点
产品件数之比率,不过在制程上要准确计算比较困难,一般以各制程的良率相乘。
●计数值计点的品质
一般信息电子产品只要有一个缺点就应视为不良品,但是一个不良品可能有一个以上的缺
点,因此以平均每件几个缺点较能完全表示质量;以dpu(DefectsPerUnit)为单位。如(图
3)的流程图。
输入1000件输出1000件
INPUT1000件1000件1000件
不良品50件30件20件
缺点数80点45点25点
(图3)
A制程的dpu=缺点数/检查件数
=80点/1000件
=0.08dpu
B制程的dpu=缺点数/检查件数
=45点/1000件
=0.045dpu
C制程的dpu=缺点数/检查件数
=25点/1000件
=0.025dpu
全制程的dpu=缺点总数/检查件数
=(80+45+25)点/4000件
=0.0375dpu
一般不同产品的每件检点数不同,检点数愈多,dpu就可能愈大,以dpu的大小来比较产
品质量的好坏似乎不太合理,因此用总检点数与总缺点数之比来比较质量会客观一点;以dppm
(DefectPartsPerMillion)为单位,如(图4)的流程图。
输入1000件输出1000件
检点数50点50点400点
INPUT1000件1000件1000件
不良品50件30件20件
缺点数80点45点25点
(图4)
A制程每百万检点平均缺点数
=(总缺点数/总检点数)×106
=(80/(1000×50))×106
=1600dppm
B制程每百万检点平均缺点数
=(总缺点数/总检点数)×106
=(45/(1000×50))×106
=900dppm
C制程每百万检点平均缺点数
=(总缺点数/总检点数)×106
=(25/(1000×400))×106
=62.5dppm
全制程每百万检点平均缺点数
=(总缺点数/总检点数)×106
=((80+45+25)/(1000×50+1000×50+1000×400))×106
=300dppm
dpu是代表每件产品平均有几个缺点,而dppm是每检查一百万的检点平均有几个缺点。一个
检点代表一产品或制程可能会出现缺点的机会,它可能是一个零件、特性、作业等等,有些地方
以ppm/part(注2),dpmo(DefectsPerMillionOpportunities)(注3)为质量指针,其实与dppm是
同样的意义。时下许多信息电子装配厂,其制程上记录是以dppm为单位,不同检点数的产品
或制程就可依下式换算为dpu。
dpu=产品或制程检点数×dppm×106
良率是最容易了解的质量指针;投入制程的产品,经制造过程后,就可以实际交给下工程或可
以直接出货的比率,良率愈高代表效率愈高,报废愈少,修理愈少,对质量、成本、交期都有直
接的关系,这是人人皆知的道理,因此,良率应为最终的质量指针。假若可以事先估算出产品或
制程的dpu,就可以预估产品在该制程的良率,以卜氏分配的性质可计算其良率。假设X为某
件产品经某制程后之观测缺点数,当X=0时,即表示该件产品没有缺点,因此,P[X=0]即表示
该产品无缺点的机率;就是良率。以下式表示
P[X=0]=e-dpu
dpu与制程良率的关系如(表1)。
dpu
5.0
4.0
3.0
2.0
1.0
0.5
0.05
0.01
Yield%
0.67%
1.83%
4.98%
13.5%
36.8%
60.7%
95.1%
99.0%
(表1)
以上之质量指针皆以计数值之计件或计点来解释其与良率之关系,而计量值之质量指针Cp
或Cpk也可以定义一产品或制程特性的良率;此处可以计数值之一检点为同样的意义,一检点
可以为一产品或制程特性。
●计量值的质量指针
制程能力指标Cp或Cpk之值在一产品或制程特性分配为常态且在管制状态下时,经由常
态分配之机率计算,可以换算为该产品或制程特性的良率或不良率,同时亦可以几个Sigma来
对照。兹以产品或制程特性中心没偏移目标值,中心偏移目标值1.5σ及中心偏移目标值T/8分
别说明之,品管先进陈文化先生认为对于Sigma水平较小时,偏移的幅度应相对的小,才较合
理,因此提出偏移目标值T/8的考虑。
先定义以下几个符号
●X:个别产品或制程特性值
●USL:规格上限
●LSL:规格下限
●m:目标值或规格中心,一般为(USL+LSL)/2
●T=USL-LSL:规格界限宽度
●μ:产品或制程特性中心或平均数
●σ:产品或制程特性标准差
(1)产品或制程特性中心没偏移目标值;即μ=m=(USL+LSL)/2
Sigma水平=+-kσ;即T=USL-LSL=2kσ
Cp=规格界限宽度/6σ=T/6σ=(USL-LSL)/6σ=2kσ/6σ=k/3=Cpk
不良率=P[|X|>kσ]=P[|Z|>k]=标准常态分配右尾机率×2
良率=(1-不良率)
Sigma
水平
+-kσ
Cp
Cpk
良率
%
不良率
ppm
1σ
0.33
68.27%
317,400
2σ
0.67
95.45%
45,600
3σ
1.00
99.73%
2,700
4σ
1.33
99.9937%
63
5σ
1.67
99.999943%
0.57
6σ
2.00
99.9999998%
0.002
(表2)中心没偏移目标值
(2)产品或制程特性中心偏移目标值1.5σ;即μ=(USL+LSL)/2+-1.5σ
Sigma水平=+-kσ;即T=USL-LSL=2kσ
●产品或制程特性中心大于目标值1.5σ
CPU=(USL-μ)/3σ=(kσ-1.5σ)/3σ=(k-1.5)/3
CPL=(μ-LSL)/3σ=(kσ+1.5σ)/3σ=(k+1.5)/3
Cpk=MIN{CPU,CPL}=(k-1.5)/3
不良率=P[X>USL]+P[X3xCPU]+P[Z>3xCPL]
=P[Z>(k+1.5)]+P[ZUSL]+P[X3xCPU]+P[Z>3xCPL]
=P[Z>(k+1.5)]+P[Z>3x(k-1.5)]
良率=(1-不良率)
Sigma
水平
+-kσ
Cp
Cpk
良率
%
不良率
ppm
1σ
0.33
-0.17
30.23%
697,672
2σ
0.67
0.17
69.13%
308,770
3σ
1.00
0.50
93.32%
66,811
4σ
1.33
0.83
99.379%
6,210
5σ
1.67
1.17
99.99767%
233
6σ
2.00
1.50
99.99966%
3.4
(表3)中心偏移目标值1.5σ
(3)产品或制程特性中心偏移目标值T/8;即μ=(USL+LSL)/2+-T/8
Sigma水平=+-kσ;即T=USL-LSL=2kσ
●产品或制程特性中心大于目标值T/8=2kσ/8=(k/4)σ
CPU=(USL-μ)/3σ=(kσ-(k/4)σ)/3σ=3k/12
CPL=(μ-LSL)/3σ=(kσ+(k/4)σ)/3σ=5k/12
Cpk=MIN{CPU,CPL}=3k/12
不良率=P[X>USL]+P[X3xCPU]+P[Z>3xCPL]
=P[Z>3k/12)]+P[Z>P[Z>5k/12]
良率=(1-不良率)
●产品或制程特性中心小于目标值T/8=2kσ/8=(k/4)σ
CPU=(USL-μ)/3σ=(kσ+(k/4)σ)/3σ=5k/12
CPL=(μ-LSL)/3σ=(kσ-(k/4)σ)/3σ=3k/12
Cpk=MIN{CPU,CPL}=3k/12
不良率=P[X>USL]+P[X3xCPU]+P[Z>3xCPL]
=P[Z>5k/12)]+P[Z>P[Z>3k/12]
良率=(1-不良率)
Sigma
水平
+-kσ
Cp
Cpk
良率
%
不良率
ppm
1σ
0.33
0.25
73.33%
266,686
2σ
0.67
0.50
92.698%
73,017
3σ
1.00
0.75
98.7687%
12,313
4σ
1.33
1.00
99.8650%
1,350
5σ
1.67
1.25
99.99116%
88.4
6σ
2.00
1.50
99.99966%
3.4
(表4)中心偏移目标值T/8
不管是计数值或计量值,产品或制程的良率均可依制程记录计算或预估出来,我们以(表2)、
(表3)、(表4)可以比对其质量水平达到几个Sigma。但是产品或制程有些检点多有些少,有些容
易有些困难,有的是零件、KD件、CKD件或最终产品,如何以一致的质量指针来表示质量水平,
以下节来说明。
4、质量指针的解读
以6Sigma国际质量标竿3.4ppm是信息电子的终极目标,几乎有定出质量目标的公司都
以6Sigma或3.4ppm为最终追求的质量水平。3.4ppm是以以一个检点而言,不是每一产品
或制程都要达到这个水平,要看产品或制程的检点数。以(表5)、(表6)来说明检点数在不同质量
水平时其相对应的良率。
检点数
n
3σ
4σ
5σ
6σ
1
99.73%
99.9937%
99.999943%
99.9999998%
2
99.46
99.99
99.9999
99.99999
5
98.66
99.97
99.9997
99.99999
10
97.33
99.94
99.9994
99.99999
50
87.36
99.69
99.997
99.99999
100
76.31
99.37
99.994
99.99998
500
25.88
96.90
99.97
99.99990
1000
6.70
93.89
99.94
99.9998
2000
0.45
88.16
99.87
99.9996
(表5)检点数与良率的关系(中心不偏移目标值)
检点数
n
3σ
4σ
5σ
6σ
1
93.32%
99.379%
99.9767%
99.99966%
2
87.09
98.76
99.95
99.99932
5
70.77
96.93
99.88
99.9983
10
50.09
93.96
99.77
99.9966
50
3.15
73.24
98.84
99.98
100
0.10
53.64
97.70
99.966
500
0.00
4.44
89.02
99.83
1000
0.00
0.20
79.24
99.66
2000
0.00
0.00
62.75
99.32
(表6)检点数与良率的关系(中心偏移目标值1.5σ)
当你的产品或制程检点为10个,良率为93.96%时,以(表6)对照质量水平约在4σ,产品
或制程检点为100个,良率为97.70%时,质量水平约在5σ。一般可依下式转将良率转换为k
Sigma水平,设良率为Yield,检点数为n,则
当中心不偏移时,k=Φ-1(Yield1/N)
当中心偏移1.5σ时,k=Φ-1(Yield1/N)+1.5
Φ-1(x)为标准常态分配累积百分点
因此,产品或制程的质量指针不管是以Yield%、ppm、dpu、dppm或计量值来记录,我们
只要知道其检点数n,将这些质量指针都转换为良率即可依上式转换为几个Sigma。
(例1)产品或制程的质量水平为500ppm,检点数为30。则
Yield=0.9995,Φ-1(0.99951/30)=Φ-1(0.99998)=4.1
当中心不偏移时为,4.1σ
当中心偏移1.5σ为,5.6σ
(例2)制的质量水平为0.005dpu,检点数为50,则
Yield=e-0.005=0.995,=Φ-1(0.9951/50)=Φ-1(0.999899)=3.7
当中心不偏移时,为3.7σ
当中心偏移1.5σ,为5.2σ
(例3)制程的质量水平为200dppm,检点数为10,则dpu=100×200×10-6=0.002,
Yield=e-0.002=0.98,=Φ-1(0.9998)=3.5
当中心不偏移时,为3.5σ
当中心偏移1.5σ时,为5.0σ
以6σ不良率3.4ppm为质量标杆时,应以产品或制程的一个检点或一个特性之dppm或ppm
为计算标准,依检点数的多寡或难易定义合理的质量指针。
当产品或制程的质量水平达到某一dppm水平时;例如500dppm,而其检点数为200个,
则实际生产时质量状况将会如何?先计算其dpu,我们可以预估其缺点的分配状况。假设生产
1000件产品,dpu=0.1时,则产品中有k个缺点的机率如下式
dpu=产品或制程检点数×dppm×10-6=200×500×10-6=0.1
P(X=k)=dpuke-dpu/k!=(0.1)ke-0.1/k!,,k=0,1,2,…
以(表7)说明其缺点分配状况。
缺点数
k
机率P(X=k)
期望
件数
总
缺点数
k=0
0.905
905
0
k=1
0.090
90
90
k=2
0.005
5
10
k≧3
0.000
0
0
Total
1.000
1,000
100
(表7)dpu=0.1时1,000产品的缺点分配
5、结论
本文只对信息电子业目前的作业阶层质量指针提出一些基本的诠释,其它有关可靠性的质量
指针则尚未提出,期能经由本文抛砖引玉邀请专家学者提出卓见。信息电子业质量水平的提升,
除了靠作业阶层降低及消除产品或制程缺点外,管理阶层推动全员的改善活动更为重要。因此,
订定能代表质量基本面的质量指针,以此建立合理可行的质量目标,依中长程计划逐步达成,是
业界应有的共识。
6、参考数据
(注1)官生平(1993):6σ的诠释,台湾质量管理学会质量管理月刊第二十九卷,第八期,
p.23~34。
(注2)陈文化(1993):制造工程之管制与迈向6σ质量,士大企业管理顾问股份有限公司。
(注3)en(1993):Six-SigmaQualityPrograms,QualityProgress,June,
p37~42.
本文发布于:2022-11-13 01:12:20,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/7829.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |