第二十一章二次根式
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其
应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握•=(a≥0,b≥0),=•;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活使用它们对二次根式实行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内
涵实行分析,得出几个重要结论,并使用这些重要结论实行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并使用
规定实行计算.
(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并使用它实行化简
(4)通过度析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概
念.利用最简二次根式的概念,来对相同的二次根式实行合并,达到对二次根式实行计算和
化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二
次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的水平.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)
•及其使用.
2.二次根式乘除法的规定及其使用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解
及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理水平,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论实行准确计算的水平,•培养学生一丝不苟
的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1二次根式3课时
21.2二次根式的乘法3课时
21.3二次根式的加减3课时
教学活动、习题课、小结2课时
第一课时
教学内容
二次根式的概念及其使用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=,那么它的图象在第一象限横、•纵坐标相等的点的坐标是
___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差
是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.由于点在第一象限,所以x=,所以所求点
的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S=.
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,
我们就把它称二次根式.所以,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称
为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、
(x≥0,y•≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有
意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题1.下列式子中,是二次根式的是()
A.-B.C.D.x
2.下列式子中,不是二次根式的是()
A.B.C.D.
3.已知一个正方形的面积是5,那么它的边长是()
A.5B.C.D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应
做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有()个.
A.0B.1C.2D.无数
5.已知a、b为实数,且+2=b+4,求a、b的值.
第一课时作业设计答案:
一、1.A2.D3.B
二、1.(a≥0)2.3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=.
2.依题意得:,
∴当x>-且x≠0时,+x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
21.1二次根式(2)
第二课时
教学内容
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
教学目标
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数
据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
教学重难点关键
1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出
()2=a(a≥0).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,
因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1计算
1.()22.(3)23.()24.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2=,(3)2=32•()2=32•5=45,
()2=,()2=.
三、巩固练习
计算下列各式的值:
()2()2()2()2(4)2
本文发布于:2022-11-11 23:12:38,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/775.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |