Globalobrvedchangesindailyclimateextremesoftemperature
andprecipitation
der,1,2,,on,,n,5
ank,k,s,,adeh,9
ur,mar,kar,ths,t,4
nson,,r,,,,15
,ucci,z-Aguirre18
Received31May2005;revid28September2005;accepted8November2005;published15March2006.
[1]Asuiteofclimatechangeindicesderivedfromdailytemperatureandprecipitation
data,withaprimaryfocusonextremeevents,ingan
exactformulaforeachindexandusingspeciallydesignedsoftware,analysdonein
nabledtheprentationof
themostup-to-dateandcomprehensiveglobalpictureoftrendsinextremetemperature
andprecipitationindicesusingresultsfromanumberofworkshopsheldindata-spar
regionsandhigh-qualitystationdatasuppliedbynumerousscientistsworldwide.
Seasonalandannualindicesfortheperiod1951–inthe
sshowed
widespreadsignificantchangesintemperatureextremesassociatedwithwarming,
70%ofthe
globallandareasampledshowedasignificantdecreaintheannualoccurrenceofcold
gions
pliesapositiveshiftinthe
aximum
itation
changesshowedawidespreadandsignificantincrea,butthechangesaremuchless
ilitydistributionsofindices
derivedfromapproximately200temperatureand600precipitationstations,withnear-
completedatafor1901–2003andcoveringaverylargeregionoftheNorthern
Hemispheremidlatitudes(andpartsofAustraliaforprecipitation)wereanalyzedforthe
periods1901–1950,1951–1978and1979–sindicateasignificantwarming
encesintemperatureindicesdistributionsare
particularlypronouncedbetweenthemostrecenttwoperiodsandforthoindicesrelated
ysisofthoindicesforwhichasonaltimeriesare
availableshowsthatthechangesoccurforallasonsalthoughtheyaregenerallyleast
itationindicesshowatendencytoward
wetterconditionsthroughoutthe20thcentury.
JOURNALOFGEOPHYSICALRESEARCH,VOL.111,D05109,doi:10.1029/2005JD006290,2006
1HadleyCentre,MetOffice,Exeter,UK.
2AlsoatBureauofMeteorologyRearchCentre,Melbourne,Victoria,
Australia.
3NowatSchoolofGeographyandEnvironmentalScience,Monash
University,Clayton,Victoria,Australia.
4ClimateRearchBranch,MeteorologicalServiceofCanada,Downs-
view,Ontario,Canada.
5NationalClimaticDataCenter/NOAA,Asheville,NorthCarolina,
USA.
6RoyalNetherlandsMeteorologicalInstitute,DeBilt,Netherlands.
7ClimaticRearchUnit,UniversityofEastAnglia,Norwich,UK.
8BureauofMeteorology,Melbourne,Victoria,Australia.
9AtmosphericScienceandMeteorologicalRearchCenter,Iran
MeteorologicalOrganization,Tehran,Iran.
10IndianInstituteofTropicalMeteorology,Pune,India.
Publishedin2006bytheAmericanGeophysicalUnion.
D05109
11NationalInstituteofWaterandAtmosphericRearch,Auckland,
NewZealand.
12DepartmentofMeteorology,UniversityofReading,Reading,UK.
13ClimateChangeRearchGroup,UniversitatRoviraiVirgili,
Tarragona,Spain.
14PhysicsDepartment,UniversityoftheWestIndies,Kingston,
Jamaica.
15ClimateRearchGroup,OxfordUniversityCentrefortheEnviron-
ment,UniversityofOxford,Oxford,UK.
16ChinaMeteorologicalAdministration,Beijing,China.
17DepartamentodeCienciasdelaAtmo´sferaylosOce´anos,Facultadde
CienciasExactasyNaturales,UniversidaddeBuenosAires,BuenosAires,
Argentina.
18DepartamentodeMeteorologiaGeneral,CentrodeCienciasdela
Atmosfera,UniversidadNacionalAuto´nomadeMe´xico,Coyoaca´n,
Mexico.
1of22
Citation:Alexander,L.V.,etal.(2006),Globalobrvedchangesindailyclimateextremesoftemperatureandprecipitation,
.,111,D05109,doi:10.1029/2005JD006290.
uction
[2]Fordecades,mostanalysoflong-termglobalcli-
matechangeusingobrvationaltemperatureandprecipi-
l
wellrespectedmonthlydatatsprovidereasonablespatial
coverageacrosstheglobe[e.g.,JonesandMoberg,2003;
PetersonandVo,1997].However,analyzingchangesin
extremes,suchaschangesinheatwavedurationorinthe
numberofdaysduringwhichtemperatureexceedsitslong-
term90thpercentile,requiresdailydataindigitalform.
Unfortunately,thedataarenotreadilyavailabletothe
internationalrearchcommunityforlargeportionsofthe
world[Follandetal.,2001].Inearlier‘‘global’’analysisof
extremeindicesbyGroismanetal.[1999]andFrichetal.
[2002],therewerealmostnodataformostofCentraland
SouthAmerica,Africa,uent
studiessuchasKiktevetal.[2003]providedgridded
updatestosomeoftheindicesbutthespatialcoverage
wasstillpoor.
[3]ThejointWorldMeteorologicalOrganizationCom-
missionforClimatology(CCl)/WorldClimateRearch
Programme(WCRP)projectonClimateVariabilityand
Predictability(CLIVAR)ExpertTeamonClimateChange
Detection,MonitoringandIndices(ETCCDMI)coordinated
twocomplimentaryeffortstoenableglobalanalysisof
ortwastheinternationalcoordinationof
thedevelopmentofasuiteofclimatechangeindiceswhich
ndicesarederivedfrom
elopment
oftheindices,includingaur-friendlysoftwarepackage
thatisfreelyavailabletotheinternationalrearchcommu-
nity,involvednotonlyETCCDMImembersbutalso
numerousotherscientists,includingmanyoftheauthors.
Inall,27indicesweredefinedandtwosoftwarepackages,
onewritteninR(RClimDex)andtheotherwrittenin
FORTRAN(FClimDex),te,
ccma//ETCCDMI,dedicatedtothiffort
providescomprehensivedescriptionsofalloftheindices,
detailsofqualitycontrolproceduresandreferencesto
providesafreedownloadofthe
ttinganexactformulaforeachindexandbyusingthe
samesoftwarepackage,analysdoneindifferentcountries
ordifferentregionscanfittogetheramlessly.
[4]ThecondETCCDMIeffortwastocoordinate
regionalworkshopswiththeaimofaddressinggapsindata
availabilityandanalysisinpreviousglobalstudies[e.g.,
Frichetal.,2002].Inmanypartsoftheworldthereare
enoughdailydataavailableindigitalformatthenational
level,althoughaccessingdigitaldailydatacanstillbe
problematicinsomeregions[Pageetal.,2004].Also,
someinstitutionsarereluctanttopartwithdataforvarious
iontothisproblempropodbythe
ETCCDMIwastoholdregionalclimatechangeworkshops
modeledontheAsiaPacificNetwork(APN)workshops
[Mantonetal.,2001;Petersonetal.,2001;Griffithtal.,
2005].TheAPNapproachwastobringtogetherscientists
fromdifferentcountrieswithintheAsia-Pacificregion.
Theparticipantsbroughttheirowndailydatatothe
uidancefrominternationalexperts,
duringtheworkshop,theyconducteddataqualitycontrol
andcomputedindicesusingastandardprocedureand
approachmadeitpossibletoexchange
ghsomeparticipantschonottoshare
theiroriginaldailydatatheymadethederivedindicesries
ional
climatechangeworkshopswereheldin2001inJamaica,to
covertheCaribbeanregion[Petersonetal.,2002]andin
Morocco,tocoverAfrica[Easterlingetal.,2003;Mokssit,
2003].Recognizingthesuccessandproblemsofthe
workshops,theETCCDMIheldfiveadditionalworkshops
in2004andearly2005inSouthAfrica(l.,
Evidenceoftrendsindailyclimateextremesoversouthern
andwestAfrica,submittedtoJournalofGeophysical
Rearch,2005),Brazil[Haylocketal.,2006;Vincentet
al.,2005],Turkey[Sensoyetal.,2006;Zhangetal.,2005a],
Guatemala[Aguilaretal.,2005]andIndia[Peterson,2005;
KleinTanketal.,2006]toprovideadditionalcoveragefor
Africa,SouthAmerica,theMiddleEast,CentralAmerica
andsouth-centralAsia.
[5]Theobjectiveofthispaperistoprovidethemost
comprehensiveanalysisofobrvedglobaltemperatureand
thind,weuhigh-
clude
(1)datathatarefreelyavailabletotheinternationalcom-
munity,(2)datafromalltheETCCDMIworkshopsthat
werenotavailablepreviouslyand(3)datathatonlysomeof
erisorganizedas
ction
includesdetaileddescriptionsofthesourcesofdailydata,
dataqualitycontrolandhomogeneitytestingprocedures,
ion3
weprovideadetailedaccountoftheanalysisoftheindices
data,sare
rsomediscussionofthe
resultsinction5followedbyconclusionsinction6.
ata
[6]Therearethreeinternationaldailydatatsfreely
e(1)theGCOS
SurfaceNetwork(GSN)datat[Petersonetal.,1997],
(2)theEuropeanClimateAsssment(ECA)datat[Klein
Tanketal.,2002]and(3)thedailyGlobalHistoricalClima-
tologyNetwork(GHCN-Daily)datat[Gleasonetal.,
2002].TheECAdataareudtocoverEuropeinthis
analysis,whileGHCN-DailydataareudfortheUnited
dataareudtosupplementthe
sourcesofdata,sdatafromthe
workshopsareudtocovertherespectiveregionswheredata
softheworkshop
dataaredescribedinrelevantworkshopreportsorpapers.
DatafromtheAPNworkshopsarealsoincluded.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
2of22
D05109
[7]Datawerealsoprovidedbytheauthors’institutions
forsomepartsoftheworldwherethedatafortheregions
fromtheabovesourceswerenotavailableorwereofpoorer
thelevelofdevelopmentofhigh-quality
dailystationdatatsdiffersfromonecountrytoanother,
supplied
carefullyhomogenizeddailytemperaturesupto2003for
210stations[Vincentetal.,2002]andahigh-quality
precipitationdatat[MekisandHogg,1999].Australian
temperaturerecordshavebeenadjustedforinhomogeneities
atthedailytimescalebytakingaccountofthemagnitudeof
discontinuitiesfordifferentpartsofthedistribution[Trewin,
2001].Stationsthatwerelikelytobeaffectedbyurbaniza-
tionwereexcluded,althoughrecentstudies[e.g.,Peterson,
2003;Parker,2004;PetersonandOwen,2005]showthat
urbanizationeffectshavehadlittleeffectonlarge-scale
lianprecipitationdataalsocame
fromahigh-qualityprecipitationdatat[Haylockand
Nicholls,2000].TemperaturedatafortheUnitedStates
werechonfromGHCN-Dailystationswherestatistical
homogeneitytestsonbothmaximumandminimumtemper-
aturesdidnotdetectanyinhomogeneities[Menneand
Williams,2005].PrecipitationdatafortheformerUSSR
werehomogeneityadjusted[GroismanandRankova,2001].
Forsomecountriesforwhichprescreenednationaldatats
werenotreadilyavailable,e.g.,Argentina[Rusticucciand
Barrucand,2004],China[Zhaietal.,2005],India,Iran
[RahimzadehandAsgari,2003]andMexico,theauthors
chostationsonthebasisoftheirknowledgeofthebest
stationsintheirowncountryand/
remainingdataweresuppliedprimarilyfromtheGHCN-
Dailydatat,e.g.,Brazil,andtheHadleyCentrearchives.
Inallcasatleastoneoftheauthorshadaccesstotheraw
stationrecordssothatreferencecouldalwaysbemadeto
theoriginaldatashouldqualityissuesariduringthe
analysis.
alityandHomogeneity
[8]Inmostcas,datasuppliedbytheauthorswere
qualitycontrolledandtheindicescalculatedusingstandard
elof
qualitycontroldifferedfromcountrytocountry(eabove)
butinallcasanattemptwasmadetouthebestpossible
asuppliedfromtheworkshopsthe
n
purpoofthisqualitycontrolprocedurewastoidentify
errorsindataprocessing,sucharrorsinmanualkeying.
Negativedailyprecipitationamountsareremovedandboth
dailymaximumandminimumtemperaturesarettoa
missingvalueifdailymaximumtemperatureislessthan
rsindailymaximumand
revalues
study,therange
isdefinedaslyingwithinfourstandarddeviations(std)of
theclimatologicalmeanofthevaluefortheday,thatis,
[mean±4Âstd].Dailytemperaturevaluesoutsidethis
rangearemanuallycheckedandeditedonacabyca
basisbyworkshopparticipantswhoareknowledgeable
abouttheirowndailydata.
[9]Statisticaltestswerenotgenerallyappliedtoprecip-
itationdataanalyzedattheworkshopsbutanyobvious
outliers,identifiedbycarefulexaminationofgraphs,were
lpostworkshopanalysiswas
employedanddataprocesdoutsideoftheworkshops
weresimilarlytestedforoutliersbutmethodsvariedfrom
ticaltests,localknowledge,an
investigationofstationhistoriesorcomparisonwithneigh-
boringstationscanallbeappliedtodeterminewhetheran
rticularly
importanttoidentifymultidayprecipitationaccumulations
thatcanappearerroneouslyinrecordsofdailyprecipitation
[VineyandBates,2004].Theoccurwhenaccumulated
mple,data
extractedfromGHCN-DailyforBrazilwererejectedifa
rainfallvaluegreaterthan1mmfellafteramissing
obrvation[Haylocketal.,2006].Evenafterdatawere
procesdandcollatedforthisstudy,annualtimeriesof
totalprecipitationanddiurnaltemperaturerangeforeach
stationwereassdagaintoidentifyoutliersthatmay
havebeenmisdintheinitialqualitycontrolprocedure.
[10]Dataqualityisarelativelyeasyproblemtoaddress
whencomparedwiththeproblemsassociatedwithdata
ousoutliersandartificialstep
changescaudbychangesinstationlocation,obrving
proceduresandpractice,instrumentationchangetc.
[Aguilaretal.,2003]maketrendanalysisunreliable,
andthereisnotalwaysaconsistentapproachtodeal
withdatainhomogeneity[Petersonetal.,1998].Forthis
reason,RClimDexcanbeudintandemwithasoftware
packagecalledRHtestwhichidentifiesstepchangesin
isbadonatwo-
pharegressionmodelwithalineartrendfortheentire
ries[Wang,2003].Exceptforthedatafromthefirst
fewworkshops,whereaslightlydifferentprogrambad
onasimilartechniquewasud,RHtesthasbeenudto
testforinhomogeneitiesinthetemperaturedatafrom
xceptionsinclude
theuofthemosthomogeneousstationsasdefinedby
Wijngaardetal.[2003]forECAtemperatureandprecip-
itationdataandtheuofhomogeneousstationsidenti-
fiedbyMenneandWilliams[2005]fortheUnitedStates.
[11]Ifstationdatawereidentifiedasbeinginhomoge-
-
geneousdatawerenotadjustedfortwomainreasons
(althoughnotethatsomedatasourceswerealreadyadjust-
ed,e.g.,GroismanandRankova[2001]andVincentetal.
[2002]priortoinclusioninthisstudy).First,therehasbeen
onlylimitedsuccesstodateinadjustingdailytemperatures
[e.g.,Vincentetal.,2002].Second,asthemanystationswe
havecovermanydifferentclimates,adjustmentoftemper-
atureswouldbeanextremelycomplextaskanddifficultto
dowell[Aguilaretal.,2003].Itispossiblethatsomestep
changescouldberealandnotduetoaninhomogeneity
ghlightstheimportanceof
havingaccesstostationmetadatawhichwegenerally
lacked.
[12]Inhomogeneitiesotherthanstepchanges,suchas
gradualchangesintemperature,
aninhomogeneitymightoccurthroughurbanization
althoughPetersonandOwen[2005]suggestthattheeffects
ofurbanizationondataaveragedoveranentirenetworkof
stationsareminimalwhencomparedtothemagnitudeof
blemofsuch
inhomogeneitiesisalsodifficulttoaddressthoughitcould
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
3of22
D05109
potentiallybedealtwithbycomparingdatafromneighbor-
r,ourstationnetworkisnotusually
denenoughforthisapproachtobeadopted.
[13]Figure1showsthelocationsofthe2223temperature
gh
therearemoreprecipitationstations,theyaregenerally
distributedlessuniformlythanthetemperaturestations.
r,
whencalculatingtrendswechoonlytoconsidergrid
boxesforwhichthedataforthetimeperiodunderconsid-
erationwereatleast80%completeandendednoearlier
ationnetworkscontributingdatatothis
studyhavegoodtemporalcoverageforthecondhalfof
the20thcenturysowemostlyfocusonthisperiod.
However,asubtofaround200temperature(depending
ontheindex)and608precipitationstationshadenoughdata
forchangesthroughouttheentire20thcenturytobe
luthe
stationstoputrecentchangesinthecontextofacentury
tionsareprimarilylocatedinNorth
America,EurasiaandAustralia,althoughafewstationsare
locatedinBrazilandSriLanka.
s
[14]Sixteenofthe27indicesrecommendedbythe
ETCCDMIaretemperaturerelatedandelevenareprecipi-
ederivedfromdailymaximumand
e-
scriptivelistoftheindicescanbeobtainedfrom
/ETCCDMI/list_27_
theindiceshasaur-dependentthresholdwhichwehave
iceswerechon
primarilyforasssmentofthemanyaspectsofachanging
globalclimatewhichincludechangesinintensity,frequency
onsof(a)temperatureand(b)ors
rtheUnitedStatesandparts
bersinbracketsindicate
thetotalnumberofstations.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
4of22
D05109
reprenteventsthatoccurveraltimesperasonoryear
givingthemmorerobuststatisticalpropertiesthanmeasures
ofextremeswhicharefarenoughintothetailsofthe
distributionsoasnottobeobrvedduringsomeyears.
Theindicescanbedividedinto5differentcategories:
[15]tile-badindicesincludeoccurrenceof
coldnights(TN10p),occurrenceofwarmnights(TN90p),
occurrenceofcolddays(TX10p),occurrenceofwarmdays
(TX90p),verywetdays(R95p)andextremelywetdays
(R99p).Thetemperaturepercentile-badindicessample
thecoldestandwarmestdecilesforbothmaximumand
minimumtemperatures,enablingustoevaluatetheextentto
cipitationindicesin
thiscategoryreprenttheamountofrainfallfallingabove
the95th(R95p)and99th(R99p)percentilesandinclude,
butarenotbelimitedto,themostextremeprecipitation
eventsinayear.
[16]teindicesreprentmaximumorminimum
cludemaximum
dailymaximumtemperature(TXx),maximumdailymini-
mumtemperature(TNx),minimumdailymaximumtem-
perature(TXn),minimumdailyminimumtemperature
(TNn),maximum1-dayprecipitationamount(RX1day)
andmaximum5-dayprecipitationamount(RX5day).
[17]oldindicesaredefinedasthenumberof
daysonwhichatemperatureorprecipitationvaluefalls
aboveorbelowafixedthreshold,includingannualoccur-
renceoffrostdays(FD),annualoccurrenceoficedays(ID),
annualoccurrenceofsummerdays(SU),annualoccurrence
oftropicalnights(TR),numberofheavyprecipitation
days>10mm(R10)andnumberofveryheavyprecipita-
tiondays>20mm(R20).Theindicesarenotnecessarily
meaningfulforallclimatesbecauthefixedthresholds
udinthedefinitionsmaynotbeapplicableeverywhereon
r,previousstudies[e.g.,Frichetal.,
2002;Kiktevetal.,2003]haveshownthattemperature
indicessuchasFD,thenumberofdaysonwhichminimum
temperaturefallsbelow0°C,haveexhibitedcoherenttrends
overthemidlatitudesduringthecondhalfofthe20th
tion,changesintheindicescanhave
profoundimpactsonparticularctorsofsocietyoreco-
oreweincludedtheindicesinourstudy,
eventhoughsomeofthemmaynotprovidetruly‘‘global’’
spatialcoverageorbetrulyextreme.
[18]onindicesdefineperiodsofexcessive
warmth,cold,wetnessordrynessorinthecaofgrowing
asonlength,cludecoldspell
durationindicator(CSDI),warmspelldurationindicator
(WSDI),growingasonlength(GSL),concutivedry
days(CDD)andconcutivewetdays(CWD).Manyof
theindiceswereudinthenearglobalanalysisofFrich
etal.[2002].Theheatwavedurationindex(HWDI)defined
byFrichetal.[2002]hasbeenfoundnottobestatistically
robustasithadatendencytohavetoomanyzerovalues
[Kiktevetal.,2003].ThisisbecauFrichetal.[2002]
udafixedthresholdof5°Caboveclimatologytocompute
resholdistoohighinmanyregions,such
asthetropics,wherethevariabilityofdailytemperatureis
comethis,theETCCDMIreplacedthisindex
withthewarmspelldurationindex(WSDI)whichis
index
onlysampleddaytimemaximawealsochotoanalyze
spellsofnighttimeminima(CSDI).TheCDDindexisthe
lengthofthelongestdryspellinayearwhiletheCWD
categoryofindicesalsoincludesthelengthofthegrowing
ason(GSL)whichisanindexthatisgenerallyonly
meaningfulintheNorthernHemisphereextratropics.
[19]ndicesincludeindicesofannualprecipita-
tiontotal(PRCPTOT),diurnaltemperaturerange(DTR),
simpledailyintensityindex(SDII),extremetemperature
range(ETR)andannualcontributionfromverywetdays
(R95pT).Theydonotfallintoanyoftheabovecategories
butchangesinthemcouldhavesignificantsocietalimpacts.
ETRandR95pTarenotdirectlycalculatedbyRClimDex
buthavebeendefinedforthisstudyasTXx–TNnand
(R95p/PRCPTOT)*100respectively.
[20]Someoftheindiceshavethesamenameand
definitionasthoudinpreviousstudies[e.g.,Frichet
al.,2002;KleinTanketal.,2002],buttheymaydiffer
icularimpor-
tanceisarecentfindingthatinhomogeneitiexistatthe
boundariesoftheclimatologicalbaperiodudtocom-
putethethresholdsforpercentilebadtemperatureindices,
i.e.,TN10p,TN90p,TX10pandTX90p,becauofsam-
plinguncertainty[Zhangetal.,2005b].Abootstrapping
methodpropodbyZhangetal.[2005b]hasbeenimple-
mentedinRClimDexandisudtocomputeindices
tstrapprocedureremoves
theinhomogeneitiesandthuliminatespossiblebiasinthe
trendestimationoftherelevantindices.
[21]Unlikeprevious‘‘global’’studies,thispaperalso
analysasonalvaluesofsomeindices,suchasthe
percentileindices,theabsolutetemperatureindicesand
sbeenmadepossible
becauRClimDexandFClimDexalsoprovidemonthly
valuesforthoindices.
ology
[22]Weconducttwodifferentanalysoftemporal
minestrendsinstationand
gridpointdata,andtheothercomparempiricalprobabil-
itydistributionfunctions(PDF)forvariousperiodsduring
edescribeourmethodforgridding
thestationdata.
ngtheIndices
[23]Thestationsavailableforthisstudyarenotevenly
evendistri-
butionmakesitdifficulttoaccuratelycomputeglobal
eaverageofdatafromallavailable
stationswouldresultinareprentationbiadtowardareas
tal.[2002]addresdthis
problembythinningthestationnetworksothattherewas
approximatelyonestationevery250,his
approachproducesamoreevenlydistributednetwork,itis
atthecostofdiscardingotherwiufulinformation.
Maximizingthenumberofstationshelpstoreducethe
,thereisno
placeintheworldforwhichwehavetoomuchclimatedata.
Inaddition,thechoiceofstationstoberetainedissomewhat
subjective,especiallyinregionswherethenetworkis
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
5of22
D05109
rtocompareobrvedindiceswith
globalclimatemodelsimulations,Kiktevetal.[2003]
griddedsomeoftheFrichetal.[2002]indicesdataonto
aregularlatitude-longitudegrid,usingamodifiedversionof
Shepard’sangulardistanceweighting(ADW)algorithm
[Shepard,1968].ThisalgorithmisudbecauNewet
al.[2000]foundittobethemostappropriatemethodfor
griddingirregularlyspaceddatawhencomparedtoveral
iedapproachofNewetal.[2000]
andKiktevetal.[2003]hasalsobeenudtogriddaily
maximumandminimumtemperatures[Caesaretal.,2006].
Weadoptedthisapproachbygriddingtheindicesontoa
regularlatitude-longitudegridbyweightingeachstation
accordingtoitsdistanceandanglefromthecentreofa
leddescriptionofthegriddingmeth-
odologyisgiveninAppendixA.
nalysisandFieldSignificance
[24]SomeoftheindicesdatadonothaveaGaussian
distributionandinthecas,asimplelinearleastsquares
oreweuda
nonparametricKendall’staubadslopeestimator[Sen,
1968]tocomputetrendssincethismethoddoesnotassume
adistributionfortheresidualsandisrobusttotheeffectof
r,apositiveautocorrelation
(whichisusuallyprentintimeriesofclimatedata)
wouldmakethistestunreliable[e.g.,vonStorch,1995;
ZhangandZwiers,2004],sowealsoconsideredtherial
correlationintheresidualswhentestingthestatistical
ativeprocedurewasadopted,
originallypropodbyZhangetal.[2000]andlaterrefined
byWangandSwail[2001],tocomputethemagnitudesof
softhis
methodaregivenbyWangandSwail[2001,AppendixA].
Thismethodwasappliedwhencalculatingthetrendsand
idean
overallpicture,globaltimerieswerealsocalculatedby
paper,atrendisconsideredtobestatisticallysignificantifit
issignificantatthe5%level.
[25]Itisalsoimportanttoassstheoverall(field)
yandChen[1983]showed
thatthecollectivesignificanceoftrendsinafinitenumber
ofinterdependenttimeriesneedstobemuchlargerthan
thenominallevel,i.e.,the5%
implementasimilartechniquetoKiktevetal.[2003]in
involvedcreating1000bootstrappedfieldsusingamoving
blockbootstrapresamplingtechnique[Wilks,1997]witha
fixedblocksizeof2foreachindex(eKiktevetal.[2003,
Appendix]foradetaileddescriptionofbootstrapping
method).Thenullhypothesisisthatthepatternoftrends
estimatedfromtheactualstationdataisduetoclimate
eforeestimatethedifferencebetweenthe
1000bootstrappedfieldsandtheactualtrendsderived
fromthestationdatatodefineasuitabletofplausible
trendsthatcouldhavearinthroughnaturalclimate
heresidualstoestimatethe
95%confidenceintervalthateachgridpointhasazerotrend.
Foreachfield,thetotalareareprentedbygridpointswith
calculatethe95th
percentileoftheareasandiftheareafortheactualtrends
exceedsthis,thenourtrendscanbesaidtobefieldsignificant.
Sincethismethodiscomputationallyexpensive,fieldsignif-
icanceisonlycalculatedfortheannualindices.
ilityDistributionFunctions
[26]PDFswereproducedforeachstationwithsufficient
databybinningannualvaluesforvarioustimeperiods.A
asonalanalysiswasconductedbyaveragingthemonthly
indexvaluesforDecember–February,March–May,
June–AugustandSeptember–Novemberifdatafromat
ethenumber
ofsuchstationsvariesovertime,wechotoanalyzethe
samesubtofstationsduringeachofthetimeperiods
lowsfortheasssmentoftemporal
changeswithouthavingtoallowforuncertaintiesarising
alsotestwhethertheprobabilitydistributionsofaparticular
indexfromdifferenttimeperiodsaresignificantlydifferentor
doneusinga2-tailedKolmogorov-Smirnovtest
withanullhypothesisthattwocumulativedistribution
functionscomputedfortwoperiodsareidentical.
s
[27]Inthisction,wefirstprenttrendanalysforthe
temperatureindicesfollowedbytheprecipitationindices.
Attheendofthisction,changesintheprobability
distributionsoftheindicesareprented.
atureIndices,1951–2003
[28]Whenaveragedovertheglobe,almostallofthe
temperatureindicesshowsignificantchangesoverthe
1951–intemperatureindices,asde-
tailedbelow,reflectanincreainbothmaximumand
salsogenerallyamuchlarger
percentageoflandareashowingsignificantchangein
minimumtemperatureextremesthanmaximumtemperature
nitudeofthetrendsisalsogenerally
findingisinagreementwithpreviousstudiesusingmonthly
globaldata,e.g.,Jonetal.[1999]andregionalstudies
usingdailydata,e.g.,Yanetal.[2002].
teandPercentile-BadTemperature
Indices
[29]Figure2showsthedecadaltrendsinextremes
between1951and2003forthepercentile-badtempera-
ghthedefinitionsofthepercentile-
badtemperatureindicesarecalculatedinpercent,the
unitswereconvertedintodaysforeaofunderstanding.
FromTable1weethat74%(73%)ofthelandarea
sampledshowsasignificantdecrea(increa)inthe
annualoccurrenceofcoldnights(warmnights).Table1
alsoshowsthatthechangesarefieldsignificantforallthe
temperatureindicexceptannualmaximumdailymaxi-
mumtemperature(TXx).Annuallythelargestchangein
extremescorrespondingtoanincreainminimumtemper-
atureisoverEurasia(Figures2aand2b).KleinTanketal.
[2006]andYanetal.[2002]showedthatthiswarminghas
onallyvery
largeincreasareenintheannualoccurrenceofwarm
nights(amorethandoublingofthefrequencyofthisindex)
overNorthAfricaandnorthernSouthAmerica(Figure2b).
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
6of22
D05109
Asiaalsoexhibitswidespreadwarminginmaximumtem-
peratureextremesalthoughthetrendpatternsformaximum
temperaturearegenerallymoremixed(Figures2cand2d).
Somepartsoftheglobedoexhibitchangesinextremes
correspondingtodecreasintemperaturealthoughthe
ptiontothisisasmall
partofcentralUnitedStateswhereasignificantincrea
equivalenttoapproximately2daysperdecadeiseninthe
annualnumberofcolddays(Figure2c).
[30]Globallytheannualnumberofwarmnights(cold
nights)incread(decread)byabout25(20)dayssince
1951(Figures2aand2b).Trendsinmaximumtemperature
extremesshowedsimilarpatternsofchange,althoughof
smallermagnitude(Figures2cand2d).Changesinallthe
(indaysperdecade,shownasmaps)andannualtimeriesanomaliesrelativeto
1961–1990meanvalues(shownasplots)forannualriesofpercentiletemperatureindicesfor1951–
2003for(a)coldnights(TN10p),(b)warmnights(TN90p),(c)colddays(TX10p),and(d)warmdays
(TX90p).Trendswerecalculatedonlyforthegridboxeswithsufficientdata(atleast40yearsofdata
duringtheperiodandthelastyearoftheriesisnoearlierthan1999).Blacklinencloregionswhere
trendsaresignificantatthe5%curvesontheplotsarenonlineartrendestimatesobtained
bysmoothingusinga21-termbinomialfilter.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
7of22
D05109
percentile-badindicesemtohaveoccurredaroundthe
mid1970swhichcorrespondswithchangesinmeanglobal
temperature[Follandetal.,2001].Indeedeveryyearsince
1979hasbeenabovethelong-termaveragefortheannual
occurrenceofwarmnightsandeveryyearsince1977has
beenbelowthelong-termaveragefortheannualoccurrence
ofcoldnights.
[31]Theabsolutetemperatureindicexhibitasimilar
pattern(notshown)withlargenegativechangeinthe1950s
forminimumdailyminimumtemperatureandminimum
r,largererrorsare
likelyintheearlierpartoftherecordinpartbecauof
thensitivityoftheparticularindicestospatialcoverage.
Atthestartoftherecord,theglobalanomaliesaredomi-
natedbyextratropicalregionswhereminimumandmaxi-
imum
dailyminimumtemperature(TNn)increadbynearly5°C
between1951and2003,thegreatestchangeintheabsolute
r,thisisdominatedbythevery
largenegativeanomaliesinthe1950swhentherewas
increadsamplinguncertainty.
erTemperatureIndices
[32]Theannualoccurrenceofcoldspellssignificantly
decread(Figure3a)whiletheannualoccurrenceofwarm
spellssignificantlyincread(Figure3b).Bothofthe
resultsarefieldsignificant(eTable1).However,thetrend
inwarmspellsisgreaterinmagnitudeandisrelatedtoa
significantdecreasincoldspellsoccurredpredominantly
incentralandnorthernRussia,partsofChinaandnorthern
Canada,howeveralargepartoftheUnitedStatesshoweda
icantincreasin
warmspellswereenovercentralandeasternUnited
States,neral
increainwarmspellswashighlightedinpreviousstudies
suchasFrichetal.[2002]andKleinTanketal.[2002]
althoughthedefinitionoftheindicatorsvariesbetween
3cshowstherearesignificantdecreas
intheannualoccurrenceoffrostdaysoverpartsofwestern
resultscomparewellwiththeresultsofKiktevetal.[2003]
largestsignificantnegativetrendforfrostdaysappearsin
theTibetanPlateau(Figure3c).Theannualoccurrenceof
frostdayshavedecreadbyapproximately16dayson
average(Figure3c)overthopartsoftheglobewherethis
ualoccurrenceoficedaysis
alsosignificantlydecreasingovercentralRussiaandeastern
andwesternChina(notshown).
[33]ForcomparisonwithFrichetal.[2002],wecreate
theextremetemperaturerangeindex(ETR)fromthe
differencebetweentheannualmaximumdailymaximum
temperatureandminimumdailyminimumtemperature
(Figure3d).Althoughbothstudiesconfirmasignificant
downwardtrendinETR,ourimprovedglobalcoverage
suggeststhatdecreasinETRmightbegreaterthanwere
suggestedbyFrichetal.[2002]whohadnodataovermost
ofthetropics,r,ourstudy
maybeaffectedbysamplinguncertaintiesprimarilyinthe
1950s.
[34]Fortheothertemperature-badindices(notshown)
resignificant
positivetrendsintheannualnumberoftropicalnightsover
centralandsouthwestAsia,NorthAfricaandsouthern
tageofLandAreaSampledShowingSignificantAnnualTrendsforEachIndicatorinTable1a
Indicator
1951–2003
TotalGridPoints+veSignificantTrend,%ÀveSignificantTrend,%
MaximumTmax(TXx)102811.62.7
MaximumTmin(TNx)99724.51.1
MinimumTmax(TXn)132529.32.6
MinimumTmin(TNn)137945.01.9
Coldnights(TN10p)13060.174.0
Colddays(TX10p)13210.546.0
Warmnights(TN90p)140473.10.1
Warmdays(TX90p)127541.00.9
Diurnaltemperaturerange(DTR)10244.239.3
Frostdays(FD)10390.240.6
Summerdays(SU25)95723.43.7
Icedays(ID)10171.327.4
Tropicalnights(TR20)104927.61.2
Growingasonlength(GSL)76116.80.3
Warmspellduration(WSDI)87128.80.6
Coldspellduration(CSDI)101010.226.0
Maximum1-dayprecip(RX1day)8247.02.7
Maximum5-dayprecip(RX5day)5146.02.1
Simpledailyintensity(SDII)65314.62.8
Heavyprecipitationdays(R10)9827.87.4
Veryheavyprecipitationdays(R20)77511.75.0
Concutivedrydays(CDD)8164.06.9
Concutivewetdays(CWD)3233.14.6
Annualtotalprecipitation(PRCPTOT)111510.17.2
Verywetdays(R95p)65311.22.5
Extremelywetdays(R99p)4266.12.8
aThetotalnumbedicatesfieldsignificance
at5%level.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
8of22
D05109
r,therearenegativetrends(althoughnon-
significant)inthisindexandtheannualnumberofsummer
daycountsshow
significantincreasinthisindexoverpartsofnorthern
Canada,westernEurope,theMiddleEast,centralAsia,
AustraliaandsouthernBrazil,althoughithassignificantly
40%ofthelandareasampledshowsasignificantdecrea
inDTR(Table1)fortheperiod1951to2003,consistent
withminimumtemperatureswarmingfasterthanmaximum
reasofsignificancearelocatedover
centralandeasternRussia,muchofChinaandeasternand
centralUnitedStates.
alResults
[35]s4and5
showdecadaltrendsandtimeriesofglobalanomaliesfor
theasonaloccurrenceofcoldandwarmnights,respec-
easonsandforbothindicatorsweagainea
2
showsthatasonallymorelandareaexhibitssignificant
changesinminimumtemperaturethanmaximumtempera-
themostwidespreadsignificantchangein
re2butforindices(a)CSDIindays,(b)WSDIindays,(c)FDindays,and(d)ETR
(i.e.,TXx-TNn)in°C.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
9of22
D05109
thetemperatureindiceswiththeleastchangeusually
stillvalidevenifweanalyze
eachhemisphereparately.
[36]Increasintheasonaloccurrenceofcoldnights
rlydecreasinthe
asonaloccurrenceofwarmnightsaregenerallynonsig-
thesignificantwarminginanyasonis
alresultsshowthatnearlyall
changesintemperatureindicatingwarmingaresignificant
between1951and2003(notshown).Everyyearsince1985
hasbeenabovethelong-termaverageoftheoccurrenceof
warmnightsinbothDJFandMAM(Figures5aand5b).
Similarlyeveryyearsince1988hasbeenbelowthelong-
termaverageoftheoccurrenceofcoldnightsforboth
theasons(Figures4aand4b).
itationIndices,1951–2003
[37]Wefindageneralincreaintheprecipitation
mparedwithtemperaturechanges,we
ealessspatiallycoherentpatternofchangeandalower
tudieshaveasrted
thattherehavebeenincreasinextremeprecipitation.
Mostnotably,Groismanetal.[2005]foundwidespread
increasinveryintenprecipitation(definedastheupper
re2butfortheasonaloccurrenceofcoldnights(TN10p)indaysfor(a)December–
February,(b)March–May,(c)June–August,and(d)September–November.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
10of22
D05109
0.3%ofdailyprecipitationevents)acrossthemidlati-
r,theirindexismuchmore‘‘extreme’’
thananyoftheindicesthatwehavestudiedandtherefore
adirectcomparisonisnotpossiblebetweenthetwo
studies.
Results
[38]Becauofsmallcorrelationscales,thegridded
precipitationindiceshaveamuchsmallerspatialcoverage
computed
onthegridsshowlittlesignificance(Table1).However,
whenaveragedacrosstheglobe,weeasignificant
increainmostoftheprecipitationindicexceptfor
concutivedrydays(CDD)andconcutivewetdays
(CWD),reflectingthefilteringofnoithatmakesiteasier
attrendsintheindices
etal.[2003]and
Frichetal.[2002]alsofoundsignificantincreasinR10
butneitherofthostudiesfoundasignificantincreain
SDII.
[39]Theannualtotalprecipitationhasthebestspatial
r,theanalysisoftotalprecipitation
changeisnotthemainobjectiveofthisstudysince
re2butfortheasonaloccurrenceofwarmnights(TN90p)indaysfor(a)December–
February,(b)March–May,(c)June–August,and(d)September–November.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
11of22
D05109
manyotherstudies[e.g.,Newetal.,2000]haveanalyzed
thisvariableusingmonthlydataandhavebetterspatial
erestwastoudailydatatoanalyzea
rangeofthemoreextremeorintenprecipitationevents
6showsthatwhenaveraged
acrosstheglobethemoreextremeprecipitationeventsin
6ashowsthatthere
havebeensignificantincreasofupto2daysper
decadeinthenumberofdaysinayearwithheavy
precipitationinsouth-centralUnitedStatesandpartsof
centagecontributionfromvery
wetdaystotheannualprecipitationtotalhasslightly
incread(by1%since1951;Figure6b)althoughthe
trendisnotsignificantandthereislittlesignificanceat
thegridboxlevelinthisindicator.
[40]Changesintheannualnumberofconcutivedry
gesttrendsare
decreasinthisindexoverIndiaalthoughsignificant
asbeena
steadydeclineinconcutivedrydayssincethe1960s.
ThisgenerallyagreeswiththeearlierstudiesofFrichet
al.[2002]andKiktevetal.[2003]whoudstationdata
ltrendsinthesimpledaily
intensityindex(Figure6d)alsoagreewellwiththe
resultsfromKiktevetal.[2003]althoughunlikeKiktev
etal.[2003]thedecreasingintensityinthewestern
UnitedStatesisnotidentifiedtobestatisticallysignifi-
cantinthisstudy.
[41]Theotherprecipitationindices,althoughgenerally
coveringsmallerregions,doindicateenhancedprecipitation
r,thereareonlyverysmall
edtotem-
peraturethereismuchlessspatialcoherencebetween
regions,withlargeareasshowingbothincreasingand
decreasingtrends.
alResults
[42]Onlytwooftheprecipitationindiceshavebeen
calculatedasonally:maximum1-dayprecipitationtotals
(RX1day)andmaximum5-dayprecipitationtotals
(RX5day).ThespatialcoverageofRX5dayisbetterthan
RX1daybecauofthefactthatithasalargerdecorre-
lationlengthscale(eAppendixA).Figure7showsthe
lyallasonsthereis
anincreainthisindexalthoughitisnotsoclearin
June–August(Figure7c).Thereareveryfewareasof
significantchangeexceptforsignificantincreasover
south-centralUnitedStatesandnorthernRussiaand
CanadainDecember–January(Figure7a),northernIndia
andsouthernBrazilinMarch–May(Figure7b)and
southeasternUnitedStatesandafewothersmallregions
intheUnitedStatesandEuropeinSeptember–November
(Figure7d).
butionChangesandTrends,1901–2003
[43]Inordertoputtheaboveresultsinahistorical
context,weexaminetemporalchangesintheindicesfor
asubtofstationswithcompletecoveragefor1901–
aretheprobabilitydistributionsofeach
indexfordifferenttimeperiodsinthe20thcenturyand
irsthalf
ofthe20thcenturytherearefarfewer(byaboutafactor
of10)
areabout200temperaturestations(dependingonthe
index)and608precipitationstationsacrosstheglobe.
Wesplitthedataupintoone50-yearperiodandtwo
approximately25-yearperiods,i.e.,1901–1950,1951–
1978and1979–rtyearofthemostrecent
periodwaschonbecauitcoincideswiththestartof
llbeimportantforfuturecom-
parisonwithreanalysisdata.
ilityDistributionFunctionsUsing
StationData:1901–2003
[44]Figures8a–8dshowthePDFsforannualvaluesof
percentile-badtemperatureindicesforeachofthethree
ferencesbetweenthedistributionsforthe
occurrenceofcoldnightsandtheoccurrenceofcolddays
(Figures8aand8c)andtheoccurrenceofwarmnights
andtheoccurrenceofwarmdays(Figures8band8d)
clearlyindicatethatextrememinimumtemperatureoccur-
renceshavebeenincreasingatafasterratethanthatof
8ashowsa
markedreductionintheoccurrenceofcoldnighttime
temperaturesoverthe1901–2003,particularlyforthe
salsoamarked
increaintheoccurrenceofwarmnighttimetemper-
aturesduringthelastcentury,againwithstrongestchange
inthelastfewdecades(Figure8b).Thecoldestminimum
temperature(TNn),thewarmestminimumtemperature
tageofLandAreaShowingSignificantTrendsatthe5%LevelforEachSeasonBetween1951and2003forIndicesThat
CanBeCalculatedSeasonallya
Indicator
DJFMAMJJASON
N+veÀveN+veÀveN+veÀveN+veÀve
TXx129524.24.1124323.02.6125916.23.6127212.32.1
TNx128139.03.2129638.02.4119027.50.8124925.11.3
TXn133034.52.7134433.92.6121113.74.8141420.72.7
TNn149348.62.0137653.81.2131333.51.5144536.21.1
TN10p13280.143.013350.166.912850.540.914210.346.2
TX10p13021.226.313360.538.412453.317.813471.49.4
TN90p129840.40.3136754.30.3123239.00.1125232.40.6
TX90p135224.72.3130223.72.5119418.02.112269.10.2
DTR11833.135.811764.432.611284.922.811683.326.1
RX1day7048.82.76347.72.17564.13.68247.02.7
RX5day96412.15.38099.12.29123.63.58788.92.6
aThenumberofgridboxessampledforeachindexandasonisdenotedbyN.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
12of22
D05109
(TNx),thecoldestmaximumtemperature(TXn)andthe
hottestmaximumtemperature(TXx)havealsoincread
inthelatterhalfofthe20thcenturybutthedifference
betweenthe1951–1978and1979–2003timeperiodsis
lessobvious(notshown).
[45]Similarpatternsofchangeemergefortheother
temperatureindices(notshown).However,theremaining
indicesarehardertoanalyzebecauthedistributionsare
theindices,excepttheannual
occurrenceofsummernightsandwarmspellduration
index,thePDFforthemostrecenttimeperiodissignifi-
cantlydifferentfromthatforthefirsthalfofthe20th
e1979–2003PDFissignificantlydifferent
fromthe1951–1978PDFforallofthetemperatureindices
studied,indicatingashifttowardwarmerconditionsinthe
mostrecentdecades.
[46]Fortheprecipitationindicestherearefewerclear
signsofchange(eFigure9),althoughthemostrecent
timeperiodissignificantlydifferentfromthe1901–1950
ralstatisticaltestsshow
changesintheprecipitationindicesthatareconsistentwith
r,theresultsaredifficultto
re2butforprecipitationindices(a)R10indays,(b)R95pT(i.e.,(R95p/
PRCPTOT)*100)in%,(c)CDDindays,and(d)SDIIinmm/day.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
13of22
D05109
quantifyandtheirsignificancemaybeaffectedbythevery
non-Gaussiannatureoftheprecipitationindices.
ilityDistributionFunctionsUsing
GriddedData:1951–2003
[47]Between1951and2003thereismuchbetter
mparingPDFs
withinthisperiod,d
mize
samplingerrorduetodifferentspatialcoverageindiffer-
entperiods(ection4.1.1),afixedtofgridboxes
whichhavenomissingdataoverthisperiodhavebeen
esultswerealsocomparedwiththePDFs
computedfromgridboxesthathad80%ofcompletedata
sindicatethatthe
varyingsamplemadelittledifferencetotheresultforthe
percentile-badtemperatureindices,buthadamuch
largereffectforsomeoftheotherindices,particularly
becauthepercentile-bad
temperatureindicesarecalculatedwithrespecttothe
localclimate(withanexpectedoutcomeof10%during
thebaperiodregardlessofregionalclimate)whilesome
oftheotherindicescandiffersignificantlybetween
re2butfortheasonalmaximum5-dayprecipitationamount(RX5day)inmmfor
(a)December–February,(b)March–May,(c)June–August,and(d)September–November.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
14of22
D05109
probabilitydistributionfunctionsfor(a)coldnights,(b)warmnights,(c)colddays,
and(d)warmdaysforasubtofstationswithatleast80%completedatabetween1901and2003for
threetimeperiods:1901–1950(black),1951–1978(blue),and1979–2003(red).Thexaxisreprents
thepercentageoftimeduringtheyearwhentheindicatorswerebelowthe10thpercentileorabovethe
berofstationsineachcaisgiveninthetopright-hand
corner.
re8butfor(a)maximum1-dayprecipitationamount,(b)heavyprecipitation
days,(c)annualtotalprecipitation,and(d)verywetdaysandasubtofstationswithatleast80%
res9a,9c,and9dthexaxis
reprentsamount(inmm),andinFigure9bitreprentstheannualnumberofdayswhen
sizesare10forFigures9aand9band50forFigures9c
berofstationsineachcaisgiveninthetopright-handcorner.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
15of22
D05109
ryingspatialcoverage
atthestartandendofthetimeperiod,e.g.,lackofdata
inthetropicsinthe1950s,changesthecompositionof
sreasonwe
onlyshowthepercentile-badtemperatureindicesin
tributionsoftheindicesusingthe
fixedgridsaresignificantlydifferentbetweenthetwo
timeperiods,withverynotableshiftsinthedistribution;
theminimumtemperaturepercentile-badindicesshow
themostmarkedshiftstowardlesscoldnightsandmore
sintheabsolutetemperatureindices
(notshown)aremorecomplextoasssastheydonot
necessarilyappearasasimpleshiftinthedistribution.
However,ingeneralthelatterperioddoesappearwarmer
andwetterthanthe1951–1978period.
[48]Fornineofthetemperatureandtwoofthe
precipitationindiceswearealsoabletoassschanges
gofminimumtemperature
extremesisapparentduringallasonsalthoughchanges
betweenDecemberandMayaregenerallymorepronounced,
withleastchangegenerallyinSeptember–November.
Figure11showstheasonalresultsfortheannual
m
temperaturexhibitasimilarpatternofchangealthough
themagnitudeofwarmingismuchsmallerinallasons.
ThishasledtoasignificantdecreainDTRduringthe
imumdailymax-
imumtemperaturePDFforJJAistheonlyindexwhich
doesnotexhibitasignificantchangebetweenthetime
periods.
inStationData
[49]Foreachindexwecalculatedtrendsfortheperiod
1901–2003forthostationsthathadsufficientdatafor
pleofsuchtrendsisgiveninFigures12
and13fortemperatureandprecipitationindices,respectively.
Extrememinimumtemperatureincreasarerelativelywide-
spreadandcoherent(Figures12aand12b)andwhilewealso
eanoverallwarmingofmaximumtemperaturextremes
since1901,thepatternisnotsocoherent(Figures12c
and12d).77%ofstationsshowedasignificantincreain
theoccurrenceofwarmnights(Figure12b)while51%
showedasignificantdecreaintheoccurrenceofcold
nights(Figure12a).Althoughtheprecipitationindices
showatendencytowardwetterconditionswithsome
regionalsignificance,thereislesslarge-scalesignificance
r,analysisofmaximum1-day
rainfall,maximum5-dayrainfall,verywetdaysand
extremelywetdays(Figure13),showedthat28%,25%,
28%and13%ofstationshaveexhibitedsignificant
gestchangeinanyprecipita-
tionindexisasignificantincreaintheannualprecipita-
tiontotalat37%
resultsindicatethatthewidespreadglobalwarmingand
wettingthatwehaveeninthepast50yearsorsoislikely
tobepartofamuchlongertermtrend.
sion
[50]Oneoftheunansweredquestionspodbythe
climatecommunityiswhetherthedistributionofobrved
probabilitydistributionfunctionsforgridboxesinFigure2withnomissingdata
between1951and2003fortwotimeperiods:1951–1978(blue)and1979–2003(red).Thexaxes
reprentthepercentageoftimeduringtheyearwhen(aandb)minimumtemperatureand(candd)
maximumtemperaturewerebelow(above)the10th(90th)sizesare1.
Thenumberofgridboxesineachcaisgiveninthetopright-handcorner.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
16of22
D05109
globaltemperatureandprecipitationischangingandifso
ngesintemperatureextremesdocumented
herearewhatonewouldgenerallyexpectinawarming
world:decreasincoldextremesandincreasinwarm
ecreasinextrememinimumtemper-
aturesaregreaterthantheincreasinextrememaximum
temperature,theresultsagreewithearlierglobalstudies
[e.g.,Jonetal.,1999]andregionalstudies[e.g.,Klein
TankandKo¨nnen,2003;Mantonetal.,2001;Vincent
andMekis,2006;Yanetal.,2002;etal.,
Spatialandtemporaltemperaturevariabilityandchange
overSpainduring1850–2003,submittedtoJournalof
GeophysicalRearch,2005]whichimplythatratherthan
viewingtheworldasgettinghotteritmightbemore
edwith
theresultsofotherstudies,theasymmetryinthechanges
incoldversuswarmextremesthatareeninthisstudy,
hintsatpotentialchangesintheshapeand/orscaleofthe
re10butforasonalresultsfor(left)coldnightsand(right)warmnights.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
17of22
D05109
tion,the
evidencesuggestscomplexchangesinprecipitation
extremesbutwhichsupportsagenerallywetterworld.
However,toaccuratelyassspotentialchangesinthe
shapeofthedistributionoftemperatureandprecipitation
obrvationsrequiresadditionalrigorousanalysisbeyond
thescopeofthispaper.
sions
[51]Usingglobalstationdatawhichhavebecome
availableforthefirsttimeasaresultofinteninterna-
tionalcollaboration,wehaveprentedapreviously
unenglobalpictureofchangesintemperatureand
thefollowing:
[52]n1951and2003,over70%oftheland
areasampledshowedasignificantincreaintheannual
occurrenceofwarmnightswhiletheoccurrenceofcold
nightsshowedasimilarproportionofsignificantdecrea.
Forthemajorityoftheothertemperatureindices,over20%
ofthelandareasampledexhibitsastatisticallysignificant
changeandallbutoneisfieldsignificant.
[53]fixedtofcompletegridboxes,wefind
thatallindicexhibitasignificantchangebetween1951–
1978and1979–gisapparentinallasons
althoughMarchtoMaygenerallyexhibitsthelargest
changeandSeptembertoNovemberthesmallestchange.
Overnearlyallpartsoftheglobebothtailsoftheminimum
temperaturedistributionhavewarmedatasimilarrate.
Maximumtemperatureextremeshavealsoincreadbut
ecipitationindicesshowa
tendencytowardwetterconditionsbutnotallshowstatis-
ticallysignificantchanges.
[54]tofstationswithnear-completedata
between1901and2003andcoveringaverylargeareaof
theNorthernHemispheremidlatitudesshowsignificant
shiftsassociatedwithwarmingintheprobabilitydistri-
antialriinwarm
nighttimetemperaturesisapparentoverthe25year
periodbetween1979and2003whencomparedtothe
dtailsofminimumtemper-
imumtemperature
indicesshowsimilarchangesbutwithsmallermagni-
tributionsofallbut2ofthetemperature
indicesaresignificantlydifferentwhentheperiodbe-
tween1979and2003iscomparedwith1901–1950.
Precipitationindicesderivedfromasubtofstations
withnear-completedatabetween1901and2003and
coveringtheNorthernHemispheremidlatitudesandparts
100-yeartrendsforthepercentiletemperatureindicesfortheperiod1901–2003fora
subtofstationswithatleast80%completedatabetween1901and2003for(a)coldnights,(b)warm
nights,(c)colddays,and(d)(blue)solid
circlesindicateasignificantincrea(decrea)atthe5%level.
D05109ALEXANDERETAL.:GLOBALEXTREMEINDICES
18of22
D05109
ofAustraliadisplayatendencytowardwetterconditions
withthedistributionsfromthe1979–2003periodsignif-
icantlydifferentfromthe1901–1950periodforevery
index.
[55]Mostoftheindicesudinthisstudyareavailableto
theinternationalrearchcommunityattheET’swebsite
/ETCCDMIthroughtheeffortand
willingnessoftheregionalclimatechangeworkshoporgan-
ddatatsarealsoavailable
from.
AppendixA:GriddingMethodology
[56]Theangulardistanceweighting(ADW)methodof
calculatinggridpointvaluesfromstationdatarequires
knowledgeofthespatialcorrelationstructureofthestation
data,i.e.,afunctionthatrelatesthemagnitudeofcorrelation
inthiswe
correlatetimeriesforeachstationpairingwithindefined
latitudebandsandthenaveragethecorrelationsfalling
mizecomputationonly
pairsofstationswithin2000kmofeachotherareconsid-
methatatzerodistancethecorrelation
ynotnecessarilybethe
bestassumptionfortheprecipitationindicesbecauoftheir
noisynaturebutitdoesprovideagoodcompromitogive
d-orderpolynomialfunc-
tionisthenfittedtothebinaveragesinordertosmooththe
nethedecorrelationlengthscaleorcorrelation
decaydistanceasthedistanceatwhichthemeancorrelation
fromthefittedfunctionfallsbelow1/e[eCaesaretal.,
2006].Usingthedecorrelationlengthscale,L,wecan
defineacorrelationfunction,f[Jonetal.,1997],for
stationias
f
i
¼eÀr
i
=LðA1Þ
wherer
i
isthedistanceoftheithstationtothegridbox
isweareabletodetermineaweighting
functionforeachstation,i,thatdependsonthelocationsof
theothercontributingstations,k,
w
i
¼fm
i
1þ
X
k
fm
k
1Àcosq
k
Àq
i
ðÞ½
本文发布于:2022-12-10 06:00:08,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/77366.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |