首页 > 试题

二项分布公式

更新时间:2022-12-08 22:49:31 阅读: 评论:0

流浪的太阳作文300字左右开头-busy的比较级


2022年12月8日发(作者:再战星期天)

二项分布概念及图表

二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发

生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验

中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

中文名二项分布外文名BinomialDistribution

提出者伯努利涉及实验伯努利试验;两点分布

属于

概率论与数理统计应用学科大气科学;气候学;计算机科学

目录

1定义

▪统计学定义

▪医学定义

2概念

3性质

4图形特点

5应用条件

6应用实例

定义

统计学定义

在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每

次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当

时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义

在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量

(dichotomousvariable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传

染源的感染与未感染等。二项分布(binomialdistribution)就是对这类只具有两种互斥结果的离散型

随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种

试验在统计学上称为伯努利试验(Bernoullitrial)。如果进行次伯努利试验,取得成功次数为

的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)

二项分布公式

式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努

里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial

coefficient)。

所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。

概念

二项分布(BinomialDistribution),即重复n次的伯努利试验(BernoulliExperiment),用ξ

表示随机试验的结果。

二项分布公式

如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是

P(ξ=K)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)=n!/(k!(n-k)!),注意:第二个等号后面的括

号里的是上标,表示的是方幂。

那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p)

期望:Eξ=np;

方差:Dξ=npq;

其中q=1-p

证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试

验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布

随机变量之和。

设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n).

因X(k)相互独立,所以期望:

方差:

证毕。

如果

1.在每次试验中只有两种可能的结果,而且是互相对立的;

2.每次实验是独立的,与其它各次试验结果无关;

3.结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。

在这试验中,事件发生的次数为一随机事件,它服从二次分布。二项分布可

二项分布

以用于可靠性试验。可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,

应用二项分布可以得到通过试验的概率。

若某事件概率为p,现重复试验n次,该事件发生k次的概率为:P=C(n,k)×p^k×(1-p)^(n-k)。

C(n,k)表示组合数,即从n个事物中拿出k个的方法数。

性质

(一)二项分布是离散型分布,概率直方图是跃阶式的。因为x为不连续变量,用概率条图表示

更合适,用直方图表示只是为了更形象些。

1.当p=q时图形是对称的

例如,,p=q=1/2,各项的概率可写作:

2.当p≠q时,直方图呈偏态,pq的偏斜方向相反。如果n很大,即使p≠q,偏态逐渐

降低,最终成正态分布,二项分布的极限分布为正态分布。故当n很大时,二项分布的概率可用正态

分布的概率作为近似值。何谓n很大呢?一般规定:当pq且nq≥5,这时的n就被

认为很大,可以用正态分布的概率作为近似值了。

(二)二项分布的平均数与标准差

如果二项分布满足pq,np≥5)时,二项分布接近正态分布。这时,也仅仅在

这时,二项分布的x变量(即成功的次数)具有如下性质:

即x变量具有μ=np,的正态分布。

式中n为独立试验的次数,p为成功事件的概率,q=1-p。由于n很大时二项分布逼近正态分布,

其平均数,标准差是根据理论推导而来的,故用μ和σ而不用X和S表示。它们的含意是指在二项

试验中,成功的次数的平均数μ=np,成功次数的分散程。例如一个掷10枚硬币的试验,出现

正面向上的平均次数为5次(μ=np=),正面向上的散布程度为√10×(1/2)×(1/2)=1.58(次),这是

根据理论的计算,而在实际试验中,有的人可得10个正面向上,有人得9个、8个……,人数越多,

正面向上的平均数越接近5,分散程度越接近1.58。

图形特点

(1)当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;

(2)当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。

注:[x]为不超过x的最大整数。

应用条件

1.各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。

2.已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从

大量观察中获得比较稳定的数值。

二项分布公式

3.n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结

果不会影响到其他观察单位的结果。如要求疾病无传染性、无家族性等。

应用实例

二项分布在心理与教育研究中,主要用于解决含有机遇性质的问题。所谓机遇问题,即指在实验

或调查中,实验结果可能是由猜测而造成的。比如,选择题目的回答,划对划错,可能完全由猜测造

成。凡此类问题,欲区分由猜测而造成的结果与真实的结果之间的界限,就要应用二项分布来解决。

下面给出一个例子。

已知有正误题10题,问答题者答对几题才能认为他是真会,或者说答对几题,才能认为不是出

于猜测因素?

分析:此题,即猜对猜错的概率各为0.5。,故此二项分布接近正态分布:

根据正态分布概率,当Z=1.645时,该点以下包含了全体的95%。如果用原分数表示,则为

它的意义是,完全凭猜测,10题中猜对8题以下的可能性为95%,猜对8、9、10题的概率只

5%。因此可以推论说,答对8题以上者不是凭猜测,而是会答。但应该明确:作此结论,也仍然有

犯错误的可能,即那些完全靠猜测的人也有5%的可能性答对8、9、10道题。

此题的概率值,还可用二项分布函数直接计算,亦得与正态分布近似的结果:

b(8100.5)=10*9/2*0.58*0.52=45/1024

b(9100.5)=10*0.59*0.51=10/1024

b(10100.5)=1/1024

根据概率加法,答对8题及其以上的总概率为:45/1024+10/1024+1/1024=56/1024=0.0547同

理,可计算8题以下的概率为95%。(近似)



附表1二项分布表

P{Xx}

n

pk(1p)nk

k

k0⎛

k

nx

p

0.0010.0020.0030.0050.010.020.030.050.100.150.200.250.30

200.998

0

0.99600.99400.99000.98010.96040.94090.90250.81000.72250.64000.56250.4900

211.00001.00001.00001.00000.99990.99960.99910.99750.99000.97750.96000.93750.9100

300.997

0

0.99400.99100.98510.97030.94120.91270.85740.72900.61410.51200.42190.3430

311.00001.00001.00000.99990.99970.99880.99740.99280.97200.93930.89600.84380.7840

321.00001.00001.00001.00000.99990.99900.99660.99200.98440.9730

400.996

0

0.99200.98810.98010.96060.92240.88530.81450.65610.52200.40960.31640.2401

411.00001.00000.99990.99990.99940.99770.99480.98600.94770.89050.81920.73830.6517

421.00001.00001.00001.00000.99990.99950.99630.98800.97280.94920.9163

431.00001.00000.99990.99950.99840.99610.9919

500.995

0

0.99000.98510.97520.95100.90390.85870.77380.59050.44370.32770.23730.1681

511.00001.00000.99990.99980.99900.99620.99150.97740.91850.83520.73730.63280.5282

521.00001.00001.00000.99990.99970.99880.99140.97340.94210.89650.8369

531.00001.00001.00000.99950.99780.99330.98440.9692

541.00000.99990.99970.99900.9976

600.994

0

0.98810.98210.97040.94150.88580.83300.73510.53140.37710.26210.17800.1176

611.00000.99990.99990.99960.99850.99430.98750.96720.88570.77650.65540.53390.4202

621.00001.00001.00001.00000.99980.99950.99780.98420.95270.90110.83060.7443

631.00001.00000.99990.99870.99410.98300.96240.9295

641.00000.99990.99960.99840.99540.9891

651.00001.00000.99990.99980.9993

700.993

0

0.98610.97920.96550.93210.86810.80800.69830.47830.32060.20970.13350.0824

711.00000.99990.99980.99950.99800.99210.98290.95560.85030.71660.57670.44490.3294

721.00001.00001.00001.00000.99970.99910.99620.97430.92620.85200.75640.6471

731.00001.00000.99980.99730.98790.96670.92940.8740

741.00000.99980.99880.99530.98710.9712

751.00000.99990.99960.99870.9962

761.00001.00000.99990.9998

800.992

0

0.98410.97630.96070.92270.85080.78370.66340.43050.27250.16780.10010.0576

811.00000.99990.99980.99930.99730.98970.97770.94280.81310.65720.50330.36710.2553

x

821.00001.00001.00000.99990.99960.99870.99420.96190.89480.79690.67850.5518

831.00001.00000.99990.99960.99500.97860.94370.88620.8059

841.00001.00000.99960.99710.98960.97270.9420

851.00000.99980.99880.99580.9887

861.00000.99990.99960.9987

871.00001.00000.9999

900.99100.98210.97330.95590.91350.83370.76020.630

2

0.38740.23160.13420.07510.0404

911.00000.99990.99970.99910.99660.98690.97180.92880.77480.59950.43620.30030.1960

921.00001.00001.00000.99990.99940.99800.99160.94700.85910.73820.60070.4628

931.00001.00000.99990.99940.99170.96610.91440.83430.7297

941.00001.00000.99910.99440.98040.95110.9012

950.99990.99940.99690.99000.9747

961.00001.00000.99970.99870.9957

971.00000.99990.9996

981.00001.0000

1000.99000.98020.970

4

0.95110.90440.81710.73740.59870.34870.19690.10740.05630.0282

1011.00000.99980.99960.99890.99570.98380.96550.91390.73610.54430.37580.24400.1493

1021.00001.00001.00000.99990.99910.99720.98850.92980.82020.67780.52560.3828

1031.00001.00000.99990.999

0

0.98720.95000.87910.77590.6496

1041.00000.99990.99840.99010.96720.92190.8497

1051.00000.99990.99860.99360.98030.9527

1061.00000.99990.99910.99650.9894

1071.00000.99990.99960.9984

1081.00001.00000.9999

1091.0000

1100.98910.97820.96750.94640.89530.80070.71530.56880.31380.16730.08590.04220.0198

1110.99990.99980.99950.99870.99480.98050.95870.89810.69740.49220.32210.19710.1130

1121.00001.00001.00001.00000.99980.99880.99630.98480.91040.77880.61740.45520.3127

1131.00001.00000.99980.99840.98150.93060.83890.71330.5696

1141.00000.99990.99720.98410.94960.88540.7897

1151.00000.99970.99730.98830.96570.9218

1161.00000.99970.99800.99240.9784

1171.00000.99980.99880.9957

1181.00000.99990.9994

1191.00001.0000

1200.98810.97630.96460.94160.88640.78470.69380.540

4

0.28240.14220.06870.03170.0138

1210.99990.99970.99940.99840.99380.97690.95140.88160.65900.44350.27490.15840.0850

1221.00001.00001.00001.00000.99980.99850.99520.980

4

0.88910.73580.55830.39070.2528

1231.00000.99990.99970.99780.97440.90780.79460.64880.4925

1241.00001.00000.99980.99570.97610.92740.84240.7237

1251.00000.99950.99540.98060.94560.8822

1260.99990.99930.99610.98570.9614

1271.00000.99990.99940.99720.9905

1281.00000.99990.99960.9983

1291.00001.00000.9998

12101.0000

1300.98710.97430.96170.93690.87750.76900.67300.51330.25420.12090.05500.02380.0097

1310.99990.99970.99930.99810.99280.97300.94360.86460.62130.39830.23360.12670.0637

1321.00001.00001.00001.00000.99970.99800.99380.97550.86610.69200.50170.33260.2025

1331.00000.99990.99950.99690.96580.88200.74730.58430.4206

1341.00001.00000.99970.99350.96580.90090.79400.6543

1351.00000.99910.99250.97000.91980.8346

1360.99990.99870.99300.97570.9376

1371.00000.99980.99880.99440.9818

1381.00000.99980.99900.9960

1391.00000.99990.9993

13101.00000.9999

13111.0000

1400.98610.97240.95880.93220.86870.75360.65280.48770.22880.10280.04400.01780.0068

1410.99990.99960.99920.99780.99160.96900.93550.847

0

0.58460.35670.19790.10100.0475

1421.00001.00001.00001.00000.99970.99750.99230.96990.84160.64790.44810.28110.1608

1431.00000.99990.99940.99580.95590.85350.69820.52130.3552

1441.00001.00000.99960.99080.95330.87020.74150.5842

1451.00000.99850.98850.95610.88830.7805

1460.99980.99780.98840.96170.9067

1471.00000.99970.99760.98970.9685

1481.00000.99960.99780.9917

1491.00000.99970.9983

14101.00000.9998

14111.0000

1500.98510.97040.95590.92760.86010.73860.63330.46330.20590.08740.03520.01340.0047

1510.99990.99960.99910.99750.99040.96470.92700.829

0

0.54900.31860.16710.08020.0353

1521.00001.00001.00000.99990.99960.99700.99060.96380.81590.60420.39800.23610.1268

1531.00001.00000.99980.99920.99450.94440.82270.64820.46130.2969

1541.00000.99990.99940.98730.93830.83580.68650.5155

1551.00000.99990.99780.98320.93890.85160.7216

1561.00000.99970.99640.98190.94340.8689

1571.00000.99940.99580.98270.9500

1580.99990.99920.99580.9848

1591.00000.99990.99920.9963

15101.00000.99990.9993

15111.00000.9999

15121.0000

1600.98410.96850.95310.92290.85150.72380.61430.44010.18530.07430.02810.01000.0033

1610.99990.99950.99890.99710.98910.96010.91820.81080.51470.28390.14070.06350.0261

1621.00001.00001.00000.99990.99950.99630.98870.95710.78920.56140.35180.19710.0994

1631.00001.00000.99980.99890.993

0

0.93160.78990.59810.40500.2459

1641.00000.99990.99910.98300.92090.79820.63020.4499

1651.00000.99990.99670.97650.91830.81030.6598

1661.00000.99950.99440.97330.92040.8247

1670.99990.99890.99300.97290.9256

1681.00000.99980.99850.99250.9743

1691.00000.99980.99840.9929

16101.00000.99970.9984

16111.00000.9997

16121.0000

1700.98310.96650.950

2

0.91830.84290.70930.59580.41810.16680.06310.02250.00750.0023

1710.99990.99950.99880.99680.98770.95540.90910.79220.48180.25250.11820.05010.0193

1721.00001.00001.00000.99990.99940.99560.98660.94970.76180.51980.30960.16370.0774

1731.00001.00000.99970.99860.99120.91740.75560.54890.35300.2019

1741.00000.99990.99880.97790.90130.75820.57390.3887

1751.00000.99990.99530.96810.89430.76530.5968

1761.00000.99920.99170.96230.89290.7752

1770.99990.99830.98910.95980.8954

1781.00000.99970.99740.98760.9597

1791.00000.99950.99690.9873

17101.00000.99990.99940.9968

17111.00000.99990.9993

17121.00000.9999

17131.0000

1800.98220.96460.94740.91370.83450.69510.57800.39720.15010.05360.01800.00560.0016

1810.99980.99940.99870.99640.98620.95050.89970.77350.45030.22410.09910.03950.0142

1821.00001.00001.00000.99990.99930.99480.98430.94190.73380.47970.27130.13530.0600

1831.00001.00000.99960.99820.98910.90180.72020.50100.30570.1646

1841.00000.99980.99850.97180.87940.71640.51870.3327

1851.00000.99980.99360.95810.86710.71750.5344

1861.00000.99880.98820.94870.86100.7217

1870.99980.99730.98370.94310.8593

1881.00000.99950.99570.98070.9404

1890.99990.99910.99460.9790

18101.00000.99980.99880.9939

18111.00000.99980.9986

18121.00000.9997

18131.0000

1900.98120.96270.94450.90920.82620.68120.56060.37740.13510.04560.01440.00420.0011

1910.99980.99930.99850.99600.98470.94540.89000.75470.42030.19850.08290.03100.0104

1921.00001.00001.00000.99990.99910.99390.98170.93350.70540.44130.23690.11130.0462

1931.00001.00000.99950.99780.98680.88500.68410.45510.26310.1332

1941.00000.99980.998

0

0.96480.85560.67330.46540.2822

1951.00000.99980.99140.94630.83690.66780.4739

1961.00000.99830.98370.93240.82510.6655

1970.99970.99590.97670.92250.8180

1981.00000.99920.99330.97130.9161

1990.99990.99840.99110.9674

19101.00000.99970.99770.9895

19111.00000.99950.9972

19120.99990.9994

19131.00000.9999

19141.0000

2000.98020.96080.94170.90460.81790.66760.54380.35850.12160.03880.01150.00320.0008

2010.99980.99930.99840.99550.98310.94010.88020.73580.39170.17560.06920.02430.0076

2021.00001.00001.00000.99990.99900.99290.97900.92450.67690.40490.20610.09130.0355

2031.00001.00000.99940.99730.98410.86700.64770.41140.22520.1071

2041.00000.99970.99740.95680.82980.62960.41480.2375

2051.00000.99970.98870.93270.80420.61720.4164

2061.00000.99760.97810.91330.78580.6080

2070.99960.99410.96790.89820.7723

2080.99990.99870.99000.95910.8867

2091.00000.99980.99740.98610.9520

20101.00000.99940.99610.9829

20110.99990.99910.9949

20121.00000.99980.9987

20131.00000.9997

20141.0000

2500.97530.95120.92760.88220.77780.60350.46700.27740.07180.01720.00380.00080.0001

2510.99970.99880.99740.99310.97420.91140.82800.64240.27120.09310.02740.00700.0016

2521.00001.00000.99990.99970.99800.98680.96200.87290.53710.25370.09820.03210.0090

2531.00001.00000.99990.99860.99380.96590.76360.47110.23400.09620.0332

2541.00000.99990.99920.99280.90200.68210.42070.21370.0905

2551.00000.99990.99880.96660.83850.61670.37830.1935

2561.00000.99980.99050.93050.78000.56110.3407

2571.00000.99770.97450.89090.72650.5118

查表方法:本表对于n、p、x给出二项分布函数P(x;n,p)的数值。

例:对于n=11,p=0.02和x=0,P(x;n,p)=0.8007。

本文发布于:2022-12-08 22:49:31,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/68791.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:n阶矩阵
下一篇:钱叠心
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图