相关系数与P值的一些基本概念
注:在期末论文写作过程中,关于相关系数与假设检验结果的表达方式,出现了一些概念
问题。这篇文档的内容是对一些相关资料进行整理后的结果,供感兴趣的同学参考。如果
需要更确切的定义,请进一步参阅统计分析类的教材。
1.相关系数
常用Pearson’scorrelationcoefficient,计算公式与传统概念上的相同,即:
常用符号r表示。-1≤r≤1
如果用于评估数据点与拟合曲线间的关联程度,则一般用相关系数的平方值表示,常用
符号为2R,1R02
典型示例如下图。2R相差不大,但显然数据规律完全不同。因此,一般需要结合拟合
曲线图表给出2R,才有参考价值。
相关系数另一方面的应用是用来评估两组数据之间相互关联的程度,简单来说,就是判
断一下两参量之间是否“相关”,有3种可能的情况,如下面的图所示。
(1)r>0,正相关。x增大,y倾向于增大;
(2)r<0,负相关。x增大,y倾向于减小;
(3)r=0,不相关。x增大,y变化无倾向性;
此时的相关系数一般用r表示。下图给出了不同r取值的例子。
显然,如果只是用来判断两参量之间的“关联”性质,r=-0.70与r=0.70应该是相同的。
所以也可用(常见)r的绝对值表达。用文字表述“关联”程度时,可参考下面的取值范围
建议:
需要注意的是,这种相关系数的计算方法给出的r值,实际上反映的是“线性相关”的
程度,如果两者虽然相关,但不是线性的,很可能给出不是很靠得住的结果,观察下面的例
子。
左下角图中,两参量显然相关,但“线性”程度不够,所以Pearson’scorrelationcoefficient
只有0.88。
另外一种相关系数的计算方法,Spearmancorrelationcoefficient,用来评估两参量之间
的“单调相关性”。如上面左下角图中的Spearman相关系数=1。Spearmancorrelationcoefficient
计算公式为:
其中,n为样本数,
下面的图是一些例子:
2.P值(p-values)
P值是配对t检验(pairedt-test)计算过程中得到的结果。用来评估前面所述相关程度计
算结果的“显著程度”。在常用统计软件SPSS中,P值(p-value,有时显示为Sig-value)
的计算是建立在如下两个假设基础上的:
无效假设(nullhypothesis)0r:H
0
,两参量间不存在“线性”关联。
备择假设(alternativehypothesis)0r:H
1
,两参量间存在“线性”关联。
如果计算出的P值很小,比如为0.001,则可说“有非常显著的证据拒绝H
0
假设,相信
H
1
假设,即两参量间存在显著的线性关联”。
P值的数值大小没有统计意义,只是将其与某一个阈值进行比对,以得到二选一的结论。
关于P值的判断阈值,可参照下面给出的建议:
典型的阈值取为0.05(5%)。因此判断规则如下:
P≤0.05,拒绝无效假设,接受备择假设,即“存在显著的线性关联”;
P>0.05,拒绝无效假设失败。
注意:
上面所给出的判断方式中,确切的结论是以“p≤阈值”为标准的,如果不是这样,
而是“p>阈值”,则只能给出检验失败的结论,不能说“接受无效假设”,从而得出
“存在显著线性关联”的结论。
P值只用于二值化判断,因此不能说P值=0.06比0.07“更好”。
为更好地理解,下面给出例子。
两参量Hb、PCV,经SPSS软件计算得到如下结果:
结论可表达为;“对于所采集到的14个样本值,计算了两参量Hb、PCV之间的Pearson
相关系数,两参量之间存在显著正相关(r=0.88,N=14,p<0.001)”。
需要注意的是,相关程度未必能够代表两参量之间存在因果关系。比如上面的例子,只
能说明Hb、PCV之间存在关联,而不是“Hb导致PCV变化”。
这种统计分析的结论,与具体的实验设计方式关系很大,需要特别关注是否存在一些隐
藏在数据背后的因素。下面是一个极端一些的例子,分析儿童足底长度(footlength)与阅
读能力(readingability)之间的关系。
用SPSS计算,可得到足底长度与阅读能力之间“显著相关”的结果
(r=0.88,N=54,p=0.003)。然而,如果考虑到年龄,则可发现这种“显著相关”很可能是靠
不住的,如下图。
下面的图是分年龄的统计结果。可以看到,无法得到“显著相关”的结论。
本文发布于:2022-12-08 05:55:18,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/64204.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |