首页 > 试题

0乘以无穷大

更新时间:2022-11-12 18:59:53 阅读: 评论:0

北师大版九年级数学期末考试-搭成语


2022年11月12日发(作者:罗伯特霍里)

高数解题技巧。高数(上册)期末复习要点

高数(上册)期末复习要点

第一章:1、极限

2、连续(学会用定义证明一个函数连续,判断间断点类型)

第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定

连续

2、求导法则(背)

3、求导公式也可以是微分公式

第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)

2、洛必达法则

3、泰勒公式拉格朗日中值定理

4、曲线凹凸性、极值(高中学过,不需要过多复习)

5、曲率公式曲率半径

第四章、第五章:积分

不定积分:1、两类换元法2、分部积分法(注意加C)

定积分:1、定义2、反常积分

第六章:定积分的应用

主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难

1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空

间平面4、空间旋转面(柱面)

高数解题技巧。(高等数学、考研数学通用)

高数解题的四种思维定势

●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,

把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0

或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十

一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势

●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开

定理以及AA*=A*A=|A|E。

●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。

●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。

●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理

●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。

●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

概率解题的九种思维定势

●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法

公式;当事件组相互独立时,用对立事件的概率公式

●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli

试验,及其概率计算公式

●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发

生概率是用全概率公式计算。关键:寻找完备事件组

●第四句话:若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。

●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使

联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区

域边界相交的为y的下限,后者为上限,而的求法类似。

●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联

想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区

域的公共部分。

●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作

(0-1)分解。即令

●第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概

率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

●第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联

想到用卡方分布,t分布和F分布的定义进行讨论。

首先对极限的总结如下

极限的保号性很重要就是说在一定区间内函数的正负与极限一致

1极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是

一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么)

1等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但

是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价

于Ax等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2LHopital法则(大题目有时候会有暗示要你使用这个方法)

首先他的使用有严格的使用前提!!!!!!

必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情

况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件

(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)

必须是函数的导数要存在!!!!!!!!(假如告诉你g(x),没告诉你是否可导,直接

用无疑于找死!!)

必须是0比0无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0

LHopital法则分为3中情况

10比0无穷比无穷时候直接用

20乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都

写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了

30的0次方1的无穷次方无穷的0次方

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移

下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两

端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋

近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注

意!!!!)

E的x展开sina展开cos展开ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则最大项除分子分母!!!!!!!!!!!

看上去复杂处理很简单!!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方

法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限

存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不

变化

102个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与

x比值。地2个就如果x趋近无穷大无穷小都有对有对应的形式

(地2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是

用地2个重要极限)

11还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方快于x!快于指数函数快于幂数函数快于对数函数

(画图也能看出速率的快慢)

当x趋近无穷的时候他们的比值的极限一眼就能看出来了

12换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是

从0到1的形式。

15单调有界的性质

对付递推数列时候使用证明单调性!!!!!!

16直接使用求导数的定义来求极限,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见

了有特别注意)

(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定

义!!!!)

本文发布于:2022-11-12 18:59:53,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/6091.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:山谷地
下一篇:钱鹤滩
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图