首页 > 试题

sin135

更新时间:2022-11-12 17:15:39 阅读: 评论:0

蘑菇解压密码-尖利的反义词


2022年11月12日发(作者:1713)

1)特殊角三角函数值

sin0=0

sin30=0.5

sin45=0.7071二分之根号2

sin60=0.8660二分之根号3

sin90=1

cos0=1

cos30=0.866025404二分之根号3

cos45=0.707106781二分之根号2

cos60=0.5

cos90=0

tan0=0

tan30=0.577350269三分之根号3

tan45=1

tan60=1.732050808根号3

tan90=无

cot0=无

cot30=1.732050808根号3

cot45=1

cot60=0.577350269三分之根号3

cot90=0

(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)

(3)锐角三角函数值的变化情况

(i)锐角三角函数值都是正值

(ii)当角度在0°~90°间变化时,

正弦值随着角度的增大(或减小)而增大(或减小)

余弦值随着角度的增大(或减小)而减小(或增大)

正切值随着角度的增大(或减小)而增大(或减小)

余切值随着角度的增大(或减小)而减小(或增大)

(iii)当角度在0°≤α≤90°间变化时,

0≤sinα≤1,1≥cosα≥0,

当角度在0°<α<90°间变化时,

tanα>0,cotα>0.

“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从

《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学

段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形

的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容

是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是

从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三

角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

附:三角函数值表

sin0=0,

sin15=(√6-√2)/4,

sin30=1/2,

sin45=√2/2,

sin60=√3/2,

sin75=(√6+√2)/2,

sin90=1,

sin105=√2/2*(√3/2+1/2)

sin120=√3/2

sin135=√2/2

sin150=1/2

sin165=(√6-√2)/4

sin180=0

sin270=-1

sin360=0

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan^2A)

Sin2A=2SinA?CosA

Cos2A=Cos^2A--Sin^2A

=2Cos^2A—1

=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)^3;

cos3A=4(cosA)^3-3cosA

tan3a=tana?tan(π/3+a)?tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

万能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a?sin(a)+b?cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]

a?sin(a)-b?cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]

1+sin(a)=[sin(a/2)+cos(a/2)]^2;

1-sin(a)=[sin(a/2)-cos(a/2)]^2;;

其他非重点三角函数

csc(a)=1/sin(a)

c(a)=1/cos(a)

双曲函数

sinh(a)=[e^a-e^(-a)]/2

cosh(a)=[e^a+e^(-a)]/2

tgh(a)=sinh(a)/cosh(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα计算方法太牛,留着以后教孩子!

1.十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5.11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

6.十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一

位数,再向下落。

例:13×326=?

解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

本文发布于:2022-11-12 17:15:39,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/5613.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

下一篇:idea可数吗
标签:sin135
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图