1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071二分之根号2
sin60=0.8660二分之根号3
sin90=1
cos0=1
cos30=0.866025404二分之根号3
cos45=0.707106781二分之根号2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269三分之根号3
tan45=1
tan60=1.732050808根号3
tan90=无
cot0=无
cot30=1.732050808根号3
cot45=1
cot60=0.577350269三分之根号3
cot90=0
(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)
(3)锐角三角函数值的变化情况
(i)锐角三角函数值都是正值
(ii)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)
余弦值随着角度的增大(或减小)而减小(或增大)
正切值随着角度的增大(或减小)而增大(或减小)
余切值随着角度的增大(或减小)而减小(或增大)
(iii)当角度在0°≤α≤90°间变化时,
0≤sinα≤1,1≥cosα≥0,
当角度在0°<α<90°间变化时,
tanα>0,cotα>0.
“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从
《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学
段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形
的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容
是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是
从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三
角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表
sin0=0,
sin15=(√6-√2)/4,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan^2A)
Sin2A=2SinA?CosA
Cos2A=Cos^2A--Sin^2A
=2Cos^2A—1
=1—2sin^2A
三倍角公式
sin3A=3sinA-4(sinA)^3;
cos3A=4(cosA)^3-3cosA
tan3a=tana?tan(π/3+a)?tan(π/3-a)
半角公式
sin(A/2)=√{(1--cosA)/2}
cos(A/2)=√{(1+cosA)/2}
tan(A/2)=√{(1--cosA)/(1+cosA)}
cot(A/2)=√{(1+cosA)/(1-cosA)}
tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)
sin(π/2+a)=cos(a)
cos(π/2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}
cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}
tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a?sin(a)+b?cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]
a?sin(a)-b?cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]
1+sin(a)=[sin(a/2)+cos(a/2)]^2;
1-sin(a)=[sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a)=1/sin(a)
c(a)=1/cos(a)
双曲函数
sinh(a)=[e^a-e^(-a)]/2
cosh(a)=[e^a+e^(-a)]/2
tgh(a)=sinh(a)/cosh(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα计算方法太牛,留着以后教孩子!
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一
位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
本文发布于:2022-11-12 17:15:39,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/5613.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |