LegalReasoning
LegalReasoning
InductiveandDeductivepatterninargumentInductiveanddeductiverefertotwodistinctlogicalprocess.
Inductivereasoningisamovementfromaspecificexamplesoractivitiestogeneralizationorrule.
Deductivereasoningisamovementfromageneralizationtospecific.
(⼀)InductiveReasoning
Inductivereasoningisreasoninginwhichthepremisektosupplystrongevidencefor(notabsoluteproofof)thetruthof
heconclusionofadeductiveargumentiscertain,thetruthoftheconclusionofaninductiveargument
isprobable,badupontheevidencegiven.
Thephilosophicaldefinitionofinductivereasoningismorenuancedthansimpleprogressionfromparticular/individual
,thepremisofaninductivelogicalargumentindicatesomedegreeofsupport
(inductiveprobability)fortheconclusionbutdonotentailit;thatis,manner,
thereisthepossibilityofmovingfromgeneralstatementstoindividualinstances(forexample,statisticalsyllogisms,
discusdbelow).
Anexampleofaninductiveargument:
90%ofbiologicallifeformsthatweknowofdependonliquidwatertoexist.
Therefore,ifwediscoveranewbiologicallifeformitwillprobablydependonliquidwatertoexist.
Thisargumentcouldhavebeenmadeeverytimeanewbiologicallifeformwasfound,andwouldhavebeencorrectevery
time;however,itisstillpossiblethatinthefutureabiologicallifeformnotrequiringwatercouldbediscovered.
Asaresult,theargumentmaybestatedlessformallyas:
Allbiologicallifeformsthatweknowofdependonliquidwatertoexist.
Allbiologicallifeprobablydependsonliquidwatertoexist.
Theformsofinductivereasoning
1.1Generalization
Ageneralization(moreaccurately,aninductivegeneralization)proceedsfromapremiaboutasampletoaconclusion
aboutthepopulation.
TheproportionQofthesamplehasattributeA.
Therefore:
TheproportionQofthepopulationhasattributeA.
Example
Thereare20balls—eitherblackorwhite—matetheirrespectivenumbers,youdrawasampleoffourballs
nductivegeneralizationwouldbethatthereare15black,andfive
white,ballsintheurn.
Howmuchthepremissupporttheconclusiondependsupon(a)thenumberinthesamplegroup,(b)thenumberinthe
population,and(c)thedegreetowhichthesamplereprentsthepopulation(whichmaybeachievedbytakingarandom
sample).Thehastygeneralizationandthebiadsamplearegeneralizationfallacies.
1.2Statisticalsyllogism
Mainarticle:Statisticalsyllogism
Astatisticalsyllogismproceedsfromageneralizationtoaconclusionaboutanindividual.
AproportionQofpopulationPhasattributeA.
AnindividualXisamemberofP.
Therefore:
ThereisaprobabilitywhichcorrespondstoQthatXhasA.
Theproportioninthefirstpremiwouldbesomethinglike"3/5thsof","all","few",tosimpliciterfallaciescan
occurinstatisticalsyllogisms:"accident"and"converaccident".
1.3Simpleinduction
Simpleinductionproceedsfromapremiaboutasamplegrouptoaconclusionaboutanotherindividual.
ProportionQoftheknowninstancesofpopulationPhasattributeA.
IndividualIisanothermemberofP.
Therefore:
ThereisaprobabilitycorrespondingtoQthatIhasA.
Thisisacombinationofageneralizationandastatisticalsyllogism,wheretheconclusionofthegeneralizationisalsothe
firstpremiofthestatisticalsyllogism.
1.4Argumentfromanalogy
Mainarticle:Argumentfromanalogy
Theprocessofanalogicalinferenceinvolvesnotingthesharedpropertiesoftwoormorethings,andfromthisbasisinferring
thattheyalsosharesomefurtherproperty:
PandQaresimilarinrespecttopropertiesa,b,andc.
ObjectPhasbeenobrvedtohavefurtherpropertyx.
Therefore,Qprobablyhaspropertyxalso.
Analogicalreasoningisveryfrequentincommonn,science,philosophyandthehumanities,butsometimesitis
edapproachisca-badreasoning.
1.5Causalinference
Acausalinferencedrawsaconclusionaboutacausalconnectionbadontheconditionsoftheoccurrenceofaneffect.
Premisaboutthecorrelationoftwothingscanindicateacausalrelationshipbetweenthem,butadditionalfactorsmustbe
confirmedtoestablishtheexactformofthecausalrelationship.
1.6Prediction
Apredictiondrawsaconclusionaboutafutureindividualfromapastsample.
ProportionQofobrvedmembersofgroupGhavehadattributeA.
Therefore:
ThereisaprobabilitycorrespondingtoQthatothermembersofgroupGwillhaveattributeAwhennextobrved.
(⼆)DeductiveReasoning
Deductivereasoning,alsodeductivelogic,logicaldeductionor,informally,top-down"logic,istheprocessofreasoningfrom
oneormorestatements(premis)ersfrominductivereasoningorabductive
reasoning.
remisaretrue,thetermsareclear,andtherulesofdeductive
logicarefollowed,thentheconclusionreachedisnecessarilytrue.
Deductivereasoning(top-downlogic)contrastswithinductivereasoning(bottom-uplogic)inthefollowingway:Indeductive
reasoning,aconclusionisreachedreductivelybyapplyinggeneralrulesthatholdovertheentiretyofacloddomainof
discour,narrowingtherangeunderconsiderationuntilonlytheconclusion(s)ctivereasoning,theconclusion
isreachedbygeneralizingorextrapolatingfrom,i.e.,,however,thattheinductive
reasoningmentionedhereisnotthesameasinductionudin
mathematicalproofs–mathematicalinductionisactuallyaformofdeductivereasoning.
Forexample:
Majorpremi:Allmenaremortal.
Minorpremi:Socratesisaman.
Conclusion:Socratesismortal.
Rule:Tobeenforceable,thecontractforthesaleofgoodsforapriceof$500ormoremustbeinwriting.
Facts:Theoralcontractforthesaleofthegoodswasnotfor$500ormore.
Legalconclusion:Thecontractinthiscainforceable.
Summary:
Derienceisthesyllogism.
Legalproblemsolvinginthecivillawtraditionisakindofdeductivereasoning,whichisbadonrulesthecontentsofwhich
arepositedpriortotheproblemstowhichtheymustbeapplied.
Forlegaldeductivereasoning,ybefromtheconstitution,astatute,an
administrativeregulation,treaty,executiveorder,,,conclude.
Theformsofdeductivereasoning
1.1Thelawofdetachment
econditionalstatementismade,andahypothesis(P)
clusion(Q)tbasicformislistedbelow:
1.P→Q(conditionalstatement)
2.P(hypothesisstated)
3.Q(conclusiondeduced)
Indeductivereasoning,wecanconcludeQfromPbyusingthelawofdetachment.[3]However,iftheconclusion(Q)isgiven
insteadofthehypothesis(P)thenthereisnodefinitiveconclusion.
Thefollowingisanexampleofanargumentusingthelawofdetachmentintheformofanif-thenstatement:
2.A=120°.
btuangle.
SincethemeasurementofangleAisgreaterthan90°andlessthan180°,
however,wearegiventheconclusionthatAisanobtuanglewecannotdeducethepremithatA=120°.
1.2Thelawofsyllogism
Thelawofsyllogismtakestwoconditionalstatementsandformsaconclusionbycombiningthehypothesisofonestatement
thegeneralform:
1.P→Q
2.Q→R
ore,P→R.
Thefollowingisanexample:
yissick,thenhewillbeabnt.
yisabnt,thenhewillmisshisclasswork.
ore,ifLarryissick,thenhewillmisshisclasswork.
Wededucedthefinalstatementbycombiningthehypothesisofthefirststatementwiththeconclusionofthecond
anexampleoftheTransitivePropertyinmathematics.
TheTransitivePropertyissometimesphradinthisform:
1.A=B.
2.B=C.
ore,A=C.
1.3Thelawofcontrapositive
Thelawofcontrapositivestatesthat,inaconditional,iftheconclusionisfal,
generalformisthefollowing:
1.P→Q.
2.~Q.
ore,wecanconclude~P.
Thefollowingareexamples:
raining,thentherearecloudsinthesky.
renocloudsinthesky.
,itisnotraining.
本文发布于:2022-12-04 05:54:08,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/49232.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |