第一阶梯
???[例1]我们来计算(a+b)(a-b)=a2-ab+ab-b2=a2-b2,这就是说,两个数的和与这两个数的差的积等于这两
个数的平方差,这个公式就叫做乘法的平方差公式,利用这个公式计算:
???(1)(2x+3y)(2x-3y)??????(2)(1+2a)(1-2a)????(3)(2x3+5y2)(2x3-5y2)??(4)(-a2-b2)(b2-a2)
???提示:
???刚开始使用公式,运算格式可分两步走,第一步先按公式特征写出一个"框架",如(1)(2x+3y)(2x-3y)=
()2-()2,第二步分析哪项相当于公式中的a,哪项相当于公式中的b,并在"框架"中填数计算。
???
参考答案:
???(1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2
???(2)(1+2a)(1-2a)=12-(2a)2=1-4a2
???(3)(2x3+5y2)(2x3-5y2)=(2x3)2-(5y2)2=4x6-25y4
???(4)(-a2-b2)(b2-a2)=(-a2-b2)(-a2+b2)=(-a2)2-(b2)2=a4-b4
???说明:
???平方差公式(a+b)(a-b)=a2-b2的特征是:
???(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
???(2)右边是乘式中两项的平方差:即用相同项的平方减去相反项的平方,在学习平方差公式时还应注
意:
???①公式中的a和b可以是具体数,也可以是单项式或多项式
???②一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目加以调整,使它变化为符合公
式标准的形式,如第(4)小题。
???[例2]计算(a+b)2和(a-b)2,可知(a+b)
2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2,即(a±b)2=a2±2ab+b2,这
就是说,两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们积的2倍,这两个公式叫做乘
法的完全平方公式。利用这两个公式计算
(1)(x+5)2???(2)(2-y)2??(3)(3a+2b)2?????(5)(-a+2b)2
???提示:
???在套用完全平方公式进行计算时,一定要先弄清题目中的哪个数或式是a,哪个数或式是b。
???参考答案:
???(1)(x+5)2=x2+2·x·5+52=x2+10x+25
???(2)(2-y)2=22-2·2·y+y2=4-4y+y2
???(3)(3a+2b)2=(3a)2+2·3a·2b+(2b)2=9a2+12ab+4b2
????
????(5)(-a+2b)2=(-a)2+2·(-a)·2b+(2b)2=a2-4ab+4b2
???说明:
???1、(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2都叫做完全平方公式,为了区别,我们把前者叫做两数和的
完全平方公式,后者叫做两数差的完全平方公式。
???2、这两个公式的结构特征是:左边是两个相同的二项式相乘,(即二项式的平方形式),右边是三项
式,是左边二项式中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍。
???3、公式中的字母a、b既可以表示具体的数,也可以表示单项式或多项式等代数式。
???4、只要符合这一公式的结构特征,就可以运用这一公式,在运用公式时,注意防止发生(a±b)2=a2±
b2这样的错误。
???[例3]计算(a+b)(a2-ab+b2)和(a-b)(a2+ab+b2),可知(a+b)(a2-ab+b2)=a2-a2b+ab2+a2b-ab2+b3=a3+b3,(a-b)
(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3=a3-b3,即(a±b)(a2ab+b2)=a3±b3,这就是说,两数和(或差)乘以它们
的平方和与它们的积的差(或和),等于这两个数的立方和(或差),这两个公式叫做乘法的立方和公式与
立方差公式,利用这两个公式计算:
???(1)(x+2)(x2-2x+4);(2)(3-y)(9+3y+y2);
???(3)(3x-4y)(9x2+12xy+16y2);
???(5)(3x2-2y2)(9x4+6x2y2+4y4)
???提示:
???先弄清题目是用立方和公式还是用立方差公式计算,再弄清题目中哪个数或式是a,哪个数或式是b,最
后再代入公式计算。
???参考答案:
???(1)(x+2)(x2-2x+4)=(x+2)(x2-x·2+22)=x3+23=x3+8
???(2)(3-y)(9+3y+y2)=(3-y)(32+3·y+y2)=33-y3=27-y3
???(3)(3x-4y)(9x2+12xy+16y2)=(3x-4y)[(3x)2+3x·4y+(4y2)]=(3x)3-(4y)3=27x3-64y3
????
???(5)(3x2-2y2)(9x4+6x2y2+4y4)=(3x2-2y2)[(3x2)2+3x2·2y2+(2y2)2]=(3x2)3-(2y2)3=27x6-8y6
???说明:
???1、注意对公式的理解和记忆(1)项数特征:两项乘三项→积为二项,(2)符号特征:二项的因式若两
项都为"+",则三项的因式符号为+,-,+,积的符号与二项因式的符号相同,二项的因式符号若为"+",
"-",则三项的因式符号为+,+,+,积的符号与二项因式的符号相同,即是说公式在各种条件都相符的情
况下,所得的积是两数的"立方和"还是两数的"立方差",主要看乘积中第一个乘式是"两数和",还是"两数
差"。
???2、公式中的字母a、b仍代表任意数或代数式。
?第二阶梯
???[例1]利用乘法公式计算:
???(1)(x+3)(x-3)(x2+9)?????(2)(a+b)(a-b)(a2-b2)
???(3)(x-2)(x+2)(x4+4x2+16)?(4)(a-b)(a2+ab+b2)(a6+a3b3+b6)
???提示:
???(1)小题可两次使用平方差公式;
???(2)小题先使用平方差公式,再使用完全平方公式;
???(3)小题先使用平方差公式,再使用立方差公式
???(4)小题两次使用立方差公式。
???参考答案:
???(1)(x+3)(x-3)(x2+9)=(x2-9)(x2+9)=(x2)2-92=x4-81
???(2)(a+b)(a-b)(a2-b2)=(a2-b2)(a2-b2)=(a2-b2)2=(a2)2-2a2b2+(b2)2=a4-2a2b2+b4
???(3)(x-2)(x+2)(x4+4x2+16)=(x2-4)(x4+4x2+16)=(x2)3-43=x6-64
???(4)(a-b)(a2+ab+b2)(a6+a3b3+b6)=(a3-b3)(a6+a3b3+b6)=(a3)3-(b3)3=a9-b9
???说明:
???遇到多项式的乘法问题,首先应看看是否符合某个乘法公式,若有恰当的公式使用可大大简化运算过
程。
???[例2]运用乘法公式计算:
???(1)(a+b+c)(a-b-c)??(2)(a-2b+3c)(a+2b-3c)
???(3)(x+2y+z)2???????(4)(2x-3y-4z)2
???提示:
???(1)(2)小题可利用平方差公式进行计算;(3)(4)小题可利用完全平方公式进行计算。
???参考答案:
???(1)(a+b+c)(a-b-c)=[a+(b+c)][a-(b+c)]=a2-(b+c)2=a2-(b2+2bc+c2)=a2-b2-2bc-c2
???(2)(a-2b+3c)(a+2b-3c)=[a-(2b-3c)][a+(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2-12bc-9c2
???(3)(x+2y+z)2=[x+(2y+z)]2=x2+2x(2y+z)+(2y+z)2=x2+4xy+2xz+4y2+4yz+z2
???(4)(2x-3y-4z)2=[2x-(3y+4z)]2=(2x)2-2·2x·(3y+4z)+(13y+4z)2=4x2-4x(3y+4z)+(19y2+24yz+16z2)=4x2
-12xy-16xz+9y2+24yz+16z2
???说明:
???进行多项式乘法运算时,一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目加以调
整。适当地添加括号,将有利于应用乘法公式,添加括号方式的不同,可一题多解,如(4)小题还可添加
括号为[(2x-3y)-4z]2,但得出的结果均相同。
???[例3]利用乘法公式计算:
???(1)(x+1)(x-1)(x2+x+1)(x2-x+1)
???(2)(a+b)(a-b)(a2+ab+b2)(a2-ab+b2)
???提示:
???(1)小题前两个因式可利用平方差公式计算,后两个因式也可利用平方差公式计算,也可以将第一个因
式与第四个因式结合利用立方和公式,第二个因式与第三个因式结合利用立方差公式(2)小题类似。
???参考答案:
???(1)
???解法一:
???(x+1)(x-1)(x2+x+1)(x2-x+1)
???=(x2-1)[(x2+1)2-x2]
???=(x2-1)(x4+2x2+1-x2)
???=(x2-1)(x4+x2+1)
???=(x2-1)[(x2)2+x2-1+12]
???=(x2)3-13=x6-1
???解法二:
???(x+1)(x-1)(x2+x+1)(x2-x+1)
???=[(x+1)(x2-x+1)[(x-1)(x2+x+1)]
???=(x3+1)(x3-1)
???=(x3)2-12
???=x6-1
???(2)?
???解法一:
???(a+b)(a-b)(a2+ab+b2)(a2-ab+b2)
???=(a2-b2)[(a2+b2)2-(ab)2]
???=(a2-b2)(a4+2a2b2+b4-a2b2)
???=(a2-b2)(a4+a2b2+b4)
???=(a2)3-(b2)3
???=a6-b6
???解法二:
???(a+b)(a-b)(a2+ab+b2)(a2-ab+b2)
???=[(a+b)(a2-ab+b2)][(a-b)(a2+ab+b2)]
???=(a3+b3)(a3-b3)
???=(a3)2-(b3)2
???=a6-b6
???说明:
???进行整式乘法运算时,要注意观察题目的特点,统观全局,恰当地选用所学的乘法公式或用乘法法则进
行计算,以上两道小题的解法中,显然解法二先运用立方和,立方差公式,再运用平方差公式,这样做既
简便又不易出错。
第三阶梯
???[例1]
???(1)化简化求值:(x+2)(x2-2x+4)+(x-1)(x2+x+1),其中
???(2)解方程:(2x+1)2-(x+1)(x-1)-3x(x-1)=0
???提示:
???用乘法公式进行化简
???参考答案:
???(1)
???(x+2)(x2-2x+4)+(x-1)(x2+x+1)
???=x3+8+x3-1
???=2x3+7
???当时,
???
???(2)(2x+1)2-(x+1)(x-1)-3x(x-1)=0
???解:
???(4x2+4x+1)-(x2-1)-3x2+3x=0
???4x2+4+1-x2+1-3x2+3x=0
???7x=-2
??????
???说明:
???在化简求值和解方程的过程中,如果遇到多项式的乘法,应先观察能否运用乘法公式,如果能运用,很
多乘法就可直接应用公式写出结果,这充分简化了计算过程。
???[例2]已知a+b=3,ab=-8,求下列各式的值。
???(1)a2+b2??(2)a2-ab+b2??(3)(a-b)2??(4)a3+b3
???提示:
???由完全平方公式(a+b)2=a2+2ab+b2,可知a2+b2=(a+b)2-2ab,利用已知条件可求出a2+b2的值,再分别代入
(2),(3),(4),可求出(2),(3),(4)式的值。注意,第(4)小题应逆用立方和公式。
???参考答案:
???(1)a2+b2=(a+b2)-2ab=32-2×(-8)=9+16=25
???(2)a2-ab+b2=a2+b2-ab=25-(-8)=25+8=33
???(3)(a-b)2=a2-2ab+b2=a2+b2-2ab=25-2×(-8)=25+16=41
???(4)a3+b3=(a+b)(a2-ab+b2)=(a+b)(a2+b2-ab)=3×[25-(-8)]=3×33=99
???说明:
???灵活运用公式变形和逆用公式,这些都是常用的解题技巧。
???[例3]若两个连续自然数的平方差是17,求这两个自然数的和?
???提示:
???设一个自然数为x,另一个自然数为x+1,根据题意,列出方程,求出这两个自然数,进而求出它们的和
???参考答案:????
???解:设这两个连续自然数是x,x+1
???根据题意得,
???(x+1)2-x2=17
???x2+2x+1-x2=17
???2x+1=17
???2x=16
???x=8
???∴x+1=8+1=9
???∴x+(x+1)=8+9=17
???答:这两个自然数的和是17。
???说明:
???解方程时还可逆用平方差公式(x+1)2-x2=(x+1+x)(x+1-x)=2x+1
???四、检测题
A组
???选择题
???1.下列各式能用平方差公式进行计算的是()
???A.(a+2)(-a-2)
???B.(-x-y)(y-x)
???C.
???D.(2x+y)(x-2y)
???2.若16x2+mxy+81y2是一个完全平方式,则m的值为()
???A.36????????B.72?????????C.-72???????????D.±72
???3.a3-27b3的一个因式是()
???A.a2+3ab+9b2
???B.a2+3ab+9b2
???C.a2-3ab+b2
???D.a2-3ab+b2
???4.若x+y=9,xy=16,则x2+y2=()
???A.81??????????B.17?????????C.49??????????D.145
???填空题
???1、(3x+2y)=(???)=9x2-4y2
???2、(-1+2a)(-1-2a)=(?????)
???3、(0.3x+y)2=(???)
???4、x2+x+(???)=
???5、9x2-(???)+49y2=(3x-7y)2
???6、(2a+3b)(4a2-6ab+9b2)=(???)
???7、(???)(m4-m2+1)=m6+1
???8、a2+b2=(a+b)2-(????)
???9、(a+b)2=(a-b)2+()
???10、(p2-q)(???)=p6-q3
B组
???1、计算:
???(1)(x+2)(x-2)(x2+4)
???(2)(x-y+1)(x+y-1)
???(3)(a+b+c)2
???(4)(x+3)(x-3)(x2-3x+9)(x2+3x+9)
???(5)
???(6)2022
???2、化简求值:
???3、解方程:4(x-3)2-(2x+1)2=(3x+1)(1-3x)+9x2
???
???答案:
???
A组答案:
???选择题
???1、B???2、D???3、A???4、C
???填空题
???1、3x-2y
???2、1-4a2
???3、0.09x2+0.6xy+y2
???4、
???5、42xy
???6、8a3+27b3
???7、m2+1
???8、2ab
???9、4ab
???10、p4+p2q+q2
???B组答案:
???1、(1)x4-16???(2)x2-y2+2y-1??(3)a2+2ab+b2+c2+2ac+2bc?
????(4)x6-729??????????(6)40804
???2、-39
???3、
???4、
本文发布于:2022-12-04 03:14:21,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/48508.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |