令x=tanα则:√(1+x^2)=√[1+(tanα)^2]=1/cosαdx=[1/(cosα)^2]dα.
sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2}
=x/√(1+x^2)
∴原式=∫{(1/cosα)[1/(cosα)^2]}dα
=∫[cosα/(cosα)^4]dα
=∫{1/[1-(sinα)^2]^2}d(sinα).
再令sinα=u则:
原式=∫[1/(1-u^2)^2]du
=(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du
=(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du
+(1/4)∫[(1-u)^2/(1-u^2)^2]du
=(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]
du
=-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du
+(1/4)∫[1/(1+u)^2]d(1+u)
=(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du
+(1/4)∫[1/(1+u)]du
=(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]
-(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)
=(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}
-(1/4)ln|1-u|+(1/4)ln|1+u|+C
=(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]
+(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C
=(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]
+(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C
=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C
=(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C
=(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C
本文发布于:2022-11-12 14:25:03,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/4835.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |