Themaintopictodayiswhatisderivative.
Andwe’regoingtolookatthisfromveraldifferentpointsofview,andthefirstoneisthe
geometricinterpretation.
That’swhatwe’llspendmostoftodayon.
Andthen,we’llalsotalkaboutaphysicalinterpretationofwhataderivativeis.
Andthenthere’sgoingtobesomethingelwhichIguessismaybethereasonwhyCalculus
issofundamental,andwhywealwaysstartwithitinmostscienceandengineeringschools,which
istheimportanceofderivatives,ofthis,toallmeasurements.
ansinscience,inengineering,ineconomics,
inpoliticalscience,etc.
Now,that’swhatwe’llbegettingstartedwith,andthen,there’sanotherthingthatwe’re
gonnadointhisunit,whichiswe’regoingtoexplainhowtodifferentiateanything.
So,ngyoucanthinkof,anythingyou
canwritedown,wecandifferentiateit.
Allright,sothatwhatwe’regonnado,andtodayasIsaid,we’regonnaspendmostofour
timeonthisgeometricinterpretation.
Solet’sbeginwiththat.
Soherewegowiththegeometricinterpretationofderivatives.
And,whatwe’regoingtodoisjustaskthegeometricproblemoffindingthetangentlineto
somegraphofsomefunctionatsomepoint.
Sothat’stheproblemthatwe’readdressinghere.
Allright,sohere’sourproblem,andnowletmeshowyouthesolution.
Let’’’sabovethepointx0.x0
’sthegeometricproblem.I
taskthatwehavenowistofigureouthowtodoit.
So,whatdidwelearnaboutwhatatangentlineis?Atangentlinehasanequation,andany
linethroughapointhastheequationy-y0iqualtom,theslope,isthe
equationforthatline,andnowtherearetwopiecesofinformationthatwe’regoingtoworkout
whatthelineis.
’pecifyP,givenx,weneedto
knowthelevelofy,whichisofcourjustf(x0).Sothat’sthefirstthingweneedtoknow.
t’uluswe
,’sthetrickypart,
andthat’sthepartthatwehavetodiscussnow.
Sojusttomakethatexplicithere,I’mgoingtomakeadefinition,whichisthatf’(x0),which
isknowasthederivative,off,atx0,istheslopeofthetangentlinetoy=f(x)atthepoint,let’s
justcallitP.
That’swhatitis,butstillIhaven’tmadeanyprogressinfiguringoutanybetterhowIdrew
etosaysomethingthat’smoreconcrete,becauIwanttobeabletocookup
wayofthinking
aboutthat,letmejusttrythis,soIcertainlyamtakingforgrantedinsortofnon-calculuspartthat
therpossibilitymightbe,
thislinehere,howdoIknowthatthisorangelineisnotatangentline,butthisotherlineisa
tangentline?Infact,thislinecrossatsomeotherpoint,’snotreally
thefactthatthelinecrossattwopoints,becauthelinecouldbewiggly,thecurvecouldbe
wiggly,’snotwhatdistinguishesthe
tangentline.
SoI’mgonnahavetosomehowgraspthis,andI’llfirstdoitinlanguage.
Andit’sthefollowingidea:it’sthatifyoutakethisorangeline,whichiscalledacantline
(割线),andyouthinkofthepointQasgettingclorandclortoP,thentheslopeofthatline
edrawitclorenough,thenthat’s
gonnabethecorrectline.
Now,sothetangentlineiqualtothelimitofsocalledcantlinePQ,
herewe’rethinkingofPasbeingfixed(不变)andQasvariable(变化).
Thenwe’regonnabeabletoputsymbolsandformulas(符号和公式)tothiscomputation.
Andwe’’sdothat.
Firstofall,I’’mthinkingofthisline
,gradually,we’
thestepswillintroduceustothebasicnotationswhichareudthroughoutCalculus.
Sothefirstnotationthat’sudisyouimaginehere’sthex-axisunderneath,andhere’sthex0,
’retravelinghereahorizontaldistancewhichis
denotedbyΔ’sdeltax,’sone
otherthingisthis
’sthisdistancehere,whichwedenoteΔf,whichisthechangeinf.
Andthen,theslopeisjusttheratio,Δf/Δtheslopeofthecant.
AndthewaywewritethatisthelimitasΔ’
isslopeofthetangentline.
rtodothat,I’mgoingtowriteΔfmore
ngeinf,sorememberthatthepointPisthepoint(x0,f(x0)).That’swhatwe
rdertocomputethedistancesandinparticularthe
verticaldistancehere,I’ishorizontaldistance
isΔx,thenthislocationis(x0+Δx).Andsothepointabovethatpointhasaformula,whichis
(x0+Δx,f(x0+Δx)).AndnowIcanwriteadifferentformulaforthederivative,whichisthe
following:sothisf’(x0),whichisthesameasm,isgoingtobethelimitasΔxgoestooofthe
changeinf,wellthechangeinfisthevalueoffattheupperpointhere,whichis(x0+Δx)and
minusitsvalueatthelowerpointP,whichiff(x0),dividedbyΔht,sothisisthe
formula.I’mgoingtoputthisinalittlebox,becauthisisbyfarthemostimportant
formulatoday,sisthewaythat
we’’ample,we’ll
’lltakethefunctionf(x),whichis1/’ssufficiently
complicatedtohaveaninterestinganswer,andsufficientlystraightforwardthatwecan
isthatwe’regonnadohere?Allwe’regoing
toiswe’’sallwe’regoingtodo,and
visuallywhatwe’reaccomplishingissomehowtotakethehyperbola,andtakeapointonthe
hyperbola,’swhatwe’reaccomplishingwhenwedo
’reaccomplishingthisgeometricallybutwe’t,
weconsiderthisdifferenceΔf/Δ
I’mgonnamakeitagainabovethispointx0,’llmakethe
alueoffatthetop,whenwemovetotherightbyf(x),soIjust
readofffromthis,mula,thefirstthingIgethereis1/(x0+Δx).
That’1/x0,that’nIhavetodivide
thatbyΔ,sohere’ingis
’sprettycomplicated,becauthere’salwaysadifferencein
isgui,thedenominatorisadifference,becauit’sthedifference
betweenthevalueontherightsideandthevalueontheleftsidehere.
Ok,sonowwe’’is
equalto,let’equalto1/Δxtimes……AllI’mgoing
ommondenominatoris(x0+Δx)*
sointhenumeratorforthefirstexpressionI,havex0,andforthecondexpressionIhave
x0+ΔisthesamethingasIhadinthenumeratorbefore,factoringoutthis
there
stoneisthatx0andx0cancel,n
thecondstepisthatthetwoexpressionscancel,thenumeratorandthedenominator.
’s
iquals-1/(x0+Δx)ntheverylaststepistotakethelimitasΔxtendsto0,and
nowwecandoit.
Beforewecouldn’?Becauthenumeratorandthedenominatorgaveus0/0.
ButnowthatI’vemadethiscancellation,thathappensisIt
thisΔxto0,andIget-1/’ht,soinorderwordswhatI’ve
shown-letmeputituphere-isthatf’(x0)=-1/,let’slookatthegraphjustalittle
bittocheckthisforplausibility,allright?What’shappeninghere,isfirstofallit’snegative.
It’slessthan0,’sthesimplest
condthingthatIwouldjustliketopointoutisthatas
xgoestoinfinity,thataswegofarthertotheright,0goesto
infinity(notzero),’salsoconsistenthere,whenx0isverylarge,this
isasmallerandsmallernumberinmagnitude,althoughit’’salways
slopingdown.
Allright,soI’eIshouldstopforaquestionor
.学生提问.ormula
herwords,whyisitthatthixpression,
whenΔxtendsto0,iqualto-1/x02?Letmeillustrateitbystickinginanumberforx0to
ht,soforinstance,letmestickinhereforx0thenumber3.
Thenit’s-1/(3+Δx)’sthesituationthatwe’thequestioniswhat
happensthisnumbergetssmallerandsmallerandsmaller,andgetstobepractically0?Well,
literallywhatwecandoisjustplugin0there,andyouget(3+0)
tendsto-1/9(over3*3).Andthat’swhatI’msayingingeneral
withthixtranumberhere.
Otherquestions?Sothequestioniswhathappenedbetweenthisstepandthisstep,right?
t,stisthisΔxwhichis
sittinginthedenominator,hat’sintheparenthes
issuppodtobethesameaswhat’n,at
thesametimeasdoingthat,Iputthatexpression,whichisthedifferenceoftwofractions,I
edenominatorhere,youetheproductof
nIjustfiguredoutwhatthenumeratorhad
tobewithoutreally……
Otherquestions?OK.
SoIclaimthatonthewhole,calculusgetsabadrap,thatit’sactuallyeasierthanmostthings.
vetomake
thingsharder,becauthat’sisactuallywhatmostpeopledoincalculus,andit’s
ecretisthatwhenpeopleaskproblemsin
calculus,rearemany,
sothelittlepieceoftheproblemwhichiscalculusisactuallyfairlyroutineandhastobeisolated
therestofit,reliesoneverythingelyoulearnedinmathematicsup
tothisstage,’sthecomplication.
Sonowwe’ingaboutwordproblem.
Weonlyhaveonesortofwordproblemthatwecanpo,becauallwe’vetalkedaboutisthis
hoaretheonlykindsofwordproblemswecanpo.
Sowhatwe’theareasoftriangles,enclod
bytheaxesandthetangenttoy=1/,sothat’medrawapicture
’considerthefirstquadrant.
Here’ht,it’re’smaybeoneofourtangentlines,which
nwe’,sothere’sourproblem.
Sowhydoesithavetodowithcalculus?Ithastodowithcalculusbecauthere’satangentinit,
sowe’ou’lle,thecalculusis
theeasypart.
Solet’fall,I’
importantthingtorememberofcour,isthatthecurveisy=1/’sperfectlyreasonabletodo.
Andalso,we’regonnacalculatetheareasofthetriangles,andyoucouldaskyourlf,intermsof
what?Well,we’ceweneedanumber,we
’regonnahavetodosomeofthisanalysisjustaswe’ve
’mgonnapickapointand,consistentwiththelabeling,we’vedonebefore,I’m
gonnatocallit(x0,y0).Sothat’salmosthalfthebattle,havingnotations,xandyforthevariables,
andx0andy0,,onceyouethatyouhavethelabeling,Ihopeit’s
tofall,thisisthepointx0,andoverhereisthepointy0.
That’ssomethingthatwe’rdertofigureouttheareaofthistriangle,
it’sprettyclearthatweshouldfindtheba,
weshouldfindtheheight,soweneedtofindthatvaluethere.
Let’rewegoingtodothis?Well,solet’
whatisthatweneedtodo?Iclaimthatthere’sonlyonecalculusstep,andI’mgonnaputstarhere
’vefiguredoutwhatthe
tangentlineis,’
what’stheformulaforthetangentline?Putthatoverhere,it’sgoingtobey-y0iqualto,and
here’sthemagicnumber,’’s-1/x0x0(x-x0).So
we’
havetofigureoutalltherestofthequantitiessowecanfigureoutthearea.
owedothat?Well,tofindthispoint,’regonnafind
’sthefirstthingwe’that,whatweneedtodo
equationforthexinterceptis
y=uginy=0,that’sthishorizontalline,’sdothatintostar.
Weget0minus,thaty0isf(x0),andf(x)is1/x,so
thisthingis1/t’qualto-1/e’sx,andhere’ht,soinorderto
findthisxvalue,
–x/sisplus1/x0becauthex0andx0x0cancelsomewhatAndsoifIputthison
theotherside,Igetx/x0x0iqualto2/thenmultiplythrough-sothat’swhatthis
implies-andifImultiplythroughbyx0x0Igetx=,soIclaimthatthispointwe’vejust
calculatedit’,I’malmostdone.
’mgonnauaverybigshortcut
ht,IclaimIcanstareatthis
andIcanlookatthat,’ht.
That’reasonIknowthisisthefollowingsohere’s
thesymmetryofthesituation,’sakindofmirrorsymmetry
lvestheexchangeof(x,y)with(y,x);sotradingtherolesofxandy.
SothesymmetrythatI’musingisthatanyformulaIgetthatinvolvesx’sandy’s,ifItradeallthe
x’sandreplacethembyy’sandtradeallthey’sandreplacethembyx’s,thenI’llhaveacorrect
erywhereIeayImakeitanx,andeverywhereIeanxI
makeitay,sthat?That’sjustanaccidentofthiquation.
That’sbecau,sothesymmetryexplained…isthattheequationisy=1/t’sthesame
thingasxy=1,ifImultiplythroughbyx,whichisthesamethingasx=1/’swherethex
fyoudon’ttrustthixplanation,yougetalsogetthey-intercept
bypluggingx=gedy=
candothesamethinganalogouslytheotherway.
AllrightsoI’malmostdonewiththegeometryproblem,andlet’,let
’dliketosayisjustmakeonemoretiny
ardestpartofcalculusis
thatwecallitonevariablecalculus,butwe’reperfectlyhappytodealwithfourvariablesatatime
orfive,problem,Ihadanx,ay,’salreadyfour
themanipulations
wedowiththemarealgebraic,andwhenwe’redoingthederivativeswejustconsiderwhat’s
llytherearemillionsofvariablefloatingaround
’swhatmakesthingscomplicated,andthat’ssomethingthatyouhavetoget
re’ssomethingelwhichismoresubtle,andthatIthinkmanypeoplewhoteach
thesubjectoruthesubjectaren’taware,becauthey’vealreadyenteredintothelanguageand
they’resocomfortablewithitthattheydon’’ssomething
’twannacreatesixnamesforvariablesoreightnamesfor
lippedthembyyou.
Sowhyisthat?WellnoticethatthefirsttimethatIgotformulafory0here,itwasthispoint.
Andsotheformulafory0,whichIpluggedinrighthere,wasfromtheequationofthecurve,
y0=1/ondtimeIdidit,Ididnotuy=1/hiquationhere,sothisisnot
y=1/’’saneasymistaketomakeiftheformulasareallablurto
youandyou’thatx-intercept
calculationthereinvolvedwherethishorizontallinemetthisdiagonalline,andy=0reprented
othisconstantly
becauit’sway,’smuchconvenientforustoallow
ourlvestheflexibi
similarly,lateron,ifIhaddonethisbythismorestraightforwardmethod,forthey-intercept,I
wouldhavetxequalto0,Thatwouldhavebeenthisverticalline,whichisx=dn’t
changetheletterxwhenIdidthat,isoneofthemain
ankeepyourlfstraight,you’realotbetteroff,andasIsaythis
isoneofthecomplexities.
Allright,sonowlet’,actually
I’reaofthetriangleis,wellit’
ba2x0theheightis2y0,’s1/2(2x0)(2y0),whichis(2x0)(y0),whichis,lo
andbehold,musingthinginthiscaisthatitactuallydidn’tmatterwhatx0andy0are.
’sjustaccidentofthefunction1/enstobethe
ht,sowehavesomemorebusinesstoday,someriousbusiness.
,firstofall,arejust
firstoneisthefollowing:we
alreadywrotey=f(x).AndsowhenwewriteΔy,thatmeansthesamethingasΔ’sa
viouslywewrotef’forthederivative,sothisisNewton’snotation
ofthemisdf/dx,andanotheroneis
dy/dx,etimesweletthefunctionslipdownbelow
sothatbecomesd/dx(f)andd/dx(y).Sotheareallnotationsthatareudforthederivative,
notationsareinterchangeably,sometimes
eomits-noticethat
thisthingomits-theunderlyingbapoint,’n’tgive
rearelotsofsituationslikethatwherepeopleleaveoutsome
oftheimportantinformation,’sanothercouple
edoutthiscalculation
ofthederivativeofthefunction1/’sdothat.
Soexample2isgoingtobethefunctionf(x)=x∧n,n=1,2,3;
whatwe’retryingtofigureoutisthederivativewithrespecttoxofx∧ninournewnotation,
n,we’regoingtoformthixpression,Δf/Δ’regoing
wepluginforΔfis((x+Δx)∧n-x∧n)/Δ
ore,letmejuststickthisinthenI’,Iwrotex0hereandx0
I’mgoingtogetridofit,becauinthisparticularcalculation,it’sanuisance.
Idon’thaveanxfloatingaround,st
don’’sawasteofblackboardenergy.
There’satotalamountofenergy,andI’vealreadyfilledupsomanyblackboardsthat,
there’,,no0’kofx
ca,Δhtnow,inorderto
simplifythis,inordertounderstandalgebraicallywhat’sgoingon,Ineedtounderstand
t’needalittletingbitof
it,,thebinomialtheoremwhichisinyourtextandexplained
inanappendix,saysthatifyoutakethesumoftwoguysandyoutakethemtothenthpower,
thatofcouris(x+Δx)hefirsttermx∧n,that’swhen
n,youcouldhavethisfactorofΔxandalltherestx’s.
Soatleastonetermoftheform(x∧(n-1))Δmanytimesdoesthathappen?
Well,ithappenswhenthere’safactorfromhere,fromthenextfactor,andsoon,andsoon.
There’thegreatthingisthat,withthis
alone,alltherestofthetermsarejunkthatwewon’more
specific,there’kiswhat’scalledbigO((Δx)
∧2).Whatthatmeansisthatthearetermsoforder,sowith(Δx)∧2,(Δx)∧
ht,that’citing,,this
istheonlyalgebrathatweneedtodo,andnowwejustneedtocombineittogether
tgetourresult.
So,nowI’
Δf/Δx,whichrememberwas1/Δxtimesthis,whichisthistimes,nowthis
is(x∧n+nx∧(n-1)Δx+...thisjunkterm)-x∧’swhatwehavesofarbad
,I’mgoingtodothemaincancellation,which
,that’s1/Δx(n∧(n-1)Δx+thistermhere).AndnowIcan
divideinbyΔnx∧(n-1)+nowit’sO(Δx).There’satleastonefactorofΔxnot
twofactorsofΔx,Icanjusttakethelimit.
’swhyIcallitjunkoriginally,becauit
ath,tendsto,asΔxgoesto0,
nx∧(n-1).AndsowhatI’veshownyouisthatd/dxofxton,iqualtonx
∧(n-1).Sonowthisisgonnabesuperimportanttoyourightonyourproblemt
ineverypossibleway,andIwanttotellyouonething,onewayinwhichit’s
thingextendsto
,ifItaked/dx
ofsomethinglike(x∧3+5x∧10)that’sgonnabeequalto3x∧2,thatapplyingthis
ruletox∧nhere,I’llgets5*10so50x∧9.
Sothisisthetypeofthingthatwegetoutofit,andwe’regonnamakemore
haywiththatnexttime.
dmylfoff.
ThequestionwasthebinomialtheoremonlyworkswhenΔ,the
binomia’svery
’tcarewhatallthecrazy
’sjunkforourpurposnow,becauwedon’thappenedtoneedanymore
,becauΔxgoesto0.
OK,eyounexttime.
本文发布于:2022-12-03 18:55:36,感谢您对本站的认可!
本文链接:http://www.wtabcd.cn/fanwen/fan/88/46104.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |