首页 > 试题

椭圆体积

更新时间:2022-12-03 10:43:44 阅读: 评论:0

帮扶高中英语差生辅导内容-椭圆焦点公式


2022年12月3日发(作者:儿媳妇和老公公)

椭圆定理(又名:椭圆猜想)

椭圆定理

易亚苏

(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。)

圆完美的和谐,椭圆和谐的完美。

一、椭圆第一定义

椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两

个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2

(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。)

M为动点,F1、F2为定点,a为常数。在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;

2c表示焦距。

二、椭圆定理

(一)椭圆定理Ⅰ(椭圆焦距定理)

椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴

长的椭圆焦距。该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)

(二)椭圆定理Ⅱ(椭圆第一常数定理)

定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等

于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)

椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;

2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;

3、当椭圆b

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。根据椭圆第一定义,a2=b2+c2,

且a>b>0,则有:b2+c2=1(椭圆单位)

当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

椭圆定理Ⅲ:椭圆第三常数K3与椭圆单位决定椭圆特性。当椭圆b>c时,椭圆向心率(f)大于椭圆第三

常数(K3),椭圆离心率(e)小于椭圆第三常数(K3),椭圆为向外膨胀型;当椭圆b=c时,椭圆向心率

(f)和椭圆离心率(e)都等于椭圆第三常数(K3),椭圆为相对稳定型;当椭圆b

大于椭圆第三常数(K3),椭圆向心率(f)小于椭圆第三常数(K3),椭圆为向内收缩型。

三、椭圆周长、面积计算公式和定理

(一)椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)

与短半轴长(b)的差。

(二)椭圆面积计算公式

椭圆面积公式:S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。圆是同心圆依照勾股定理和谐组合。椭圆中有常数K1和K2,椭圆的常数与椭圆周

长、面积计算公式,一个为体,一个为用。

一、椭圆周长、面积计算公式

根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)

与短半轴长(b)的差。

椭圆面积公式:S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

二、椭圆常数由来及周长、面积公式推导过程

(一)发现椭圆常数

常数在于探索和发现。椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。椭圆三要素确

定任意两项就确定椭圆。椭圆三要素其中两项的某种数学关系决定椭圆周长和面积。

椭圆的周长取值范围:4a

椭圆周长猜想:L=(2πa-4a)T(2)

T是猜想的椭圆周率。将(1)等式与(2)等式合并,得:

4a<(2πa-4a)T<2πa(3)

根据不等式基本性质,将不等式(3)同除(2πa-4a),有:

4a/(2πa-4a)

简化表达式(4):

2/(π-2)

定义:K1=2/(π-2);K2=π/(π-2)

计算K1、K2的值会发现K1、K2是两个非常奇特的数:

K1=1.751……K2=2.751……

椭圆第二常数:K2=K1+1

椭圆常数的发现过程描述简单,得来却要复杂得多。

(二)椭圆周长公式推导

长期以来我们只用椭圆离心率e=c/a来描述椭圆,却忽视了椭圆a与b的关系。定义:椭圆向心率为f,f=b/a。

根据椭圆第一定义,椭圆向心率f,有0

K1+f

定义:T=K1+f,将此等式代入等式(2)则有:

L=(2πa-4a)T=2(π-2)a(K1+f)

=2(π-2)a(2/(π-2)+b/a)=2πb+4(a-b)

椭圆周长计算公式:L=2πb+4(a-b)

(三)椭圆面积公式推导

椭圆面积的取值范围:0

(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。如:上式中πa2为π乘a的二次方。)

椭圆面积猜想:S=πa2T(6)

T是猜想的椭圆面积率。将(5)等式与(6)等式合并,得:

0<πa2T<πa2(7)

根据不等式基本性质,将不等式(7)同除πa2,则有:0

S=πa2T=πa2(K+f)(8)

在等式(8)中K=0,f=b/a,代入等式中:

S=πa2b/a=πab

椭圆面积计算公式:S=πab

关于《椭圆定理》中的T=k1+f问题

易亚苏

《椭圆定理》一文中有:“定义1:K1=2/(π-2),K1为椭圆第一常数。定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率”。有聪明的网友提出“定义:T=k1+f没有依据”,现就此问题作出如下分

析说明。

(一)

在《椭圆常数K1、K2的由来与周长、面积公式推导》中,有“T是猜想的椭圆周率”,并“定义:T=K1+f”

(《椭圆定理》中也有此定义,见上)。《椭圆常数K1、K2的由来与周长、面积公式推导》中还有表达

式:2/(π-2)

定义:K1=2/(π-2);K2=π/(π-2)。这样定义理当无可非议。

那么,K1

于具体椭圆而言k1b>0)(参见《椭圆定理》)。因为0

所以k1

由椭圆定义,a>b>0,因为f=b/a,即0

时,椭圆接近圆,其周长近似于2πa。当b在0与a之间变化时,形状为椭圆,其周长为L=2πb+4(a-b)。

以下作简要分析,如果把椭圆的a作为椭圆单位,那么f=B(椭圆单位),B=b/a(椭圆单位),其中0

也即0

注:椭圆单位的概念很重要,切记并体会其内含!在《椭圆定理》短文中首次提出了“椭圆单位”的概念,“定

义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位”。

其实T=k1+f的定义既是从椭圆中的代数内含关系推理而来,也是基于“椭圆单位”的思考而来。

(二)

研究椭圆时笔者发现了K1、K2两个非常奇特的数:

K1=1.751……

K2=2.751……

这两个奇特的数里包含了π,π是圆周率,f=b/a是0到1之间的小数,那么对于椭圆来说T=k1+f是一个

也包含了π的特定数,所以定义T为“椭圆周率”。椭圆周率与圆周率不同,圆周率是固定的值π,椭圆周

率是变化的值T=k1+f,它随椭圆b与a的比值变化而变化。从某种意义上说圆是椭圆的范围,由于椭圆定

义了a>b>0,所以只能称“圆是椭圆的范围”,而不能称圆是特殊的椭圆。但是在研究椭圆时以椭圆a为半

径的圆起到了很好的参考,所以笔者在《椭圆定理》中对圆和椭圆这两种几何图形,只能发出“圆完美的

和谐,椭圆和谐的完美”这样的感叹。

(三)

笔者认为任何科学研究的方法都基于:1、发现特殊现象;2、提出假设或猜想;3、利用假设或猜想做出

结论;4、对结论进行检验。《椭圆定理》就是基于这四点写出的短文。笔者认为论文不在长短,而在其价

值。当今的椭圆理论是不完整的(比如只有近似的椭圆周长计算公式,缺少标准的椭圆周长计算公式),

那么“椭圆理论”的依据还需要靠发现来完善。任何科学的原始依据从哪里来?从发现来。对特殊现象的发

现加以总结,通过检验就可以成为理论;理论升华就是科学,科学也是理论依据的源泉。

(四)

椭圆周长无疑在4a

(B=b/a椭圆单位)从0到1的平滑变化,必然导致其椭圆周长的平滑变化。椭圆是平滑的闭合曲线,其

周长与f=b/a的变化有着必然的对应变化数学关系。所以笔者在《椭圆定理》中要定义f为椭圆向心率,f=b/a,

(a>b>0)。如果引用椭圆单位,则4

在《椭圆定理》短文中有“后附《椭圆的奥秘》椭圆周长、面积验算公式表”,可惜网上尚未能表示出“验算

公式表”,相信您用Excel可以很容易作出“验算公式表”,并可以对椭圆周长计算公式L=2πb+4(a-b)进行序

列的直观检验。椭圆周长计算公式L=2πb+4(a-b)中虽然没有出现椭圆周率T,但这个公式是通过椭圆周率

T推导演变而来。常数为体,公式为用。

(五)

当今尚无标准的椭圆周长计算公式是基础科学中的遗憾之一,现在科学中所使用的椭圆周长都是近似值,

这也是科学的遗憾之一,所以研究椭圆周长计算公式是十分有意义的。笔者认为一个公式的对与错,既有

意义也没有意义,因为科学是发展的,科学是循序渐进的过程。科学探索的过程是寂寞而愉快的,但我们

要认识到今天的正确不代表明天的正确,如果没有这样的观念,科学也就难于进步。10的负50次方对古

人而言除了代表0没有其他的意义,然而10的负50次方对现代人而言可以代表0,也可以不代表0。随

着科学技术的提高,10的负N次方的意义也在发生变化。宇宙之浩大,用椭圆周长的近似公式去研究宇

宙,今天不出问题,明天必定要出大问题。人类对宇宙的认识从神话到科学、从主观到客观是不以个人的

意志为转移的,科学发展到今天,我们更要具有科学发展观。

任一部分椭圆面积

椭圆周长

(一)椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四

倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式

椭圆面积公式:S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴

长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭

圆周率T推导演变而来。常数为体,公式为用。

近似L=√(4abπ^2+15(a-b)^2)(1+MN)(M=4/√15-1、N=((a-b)/a)^9)近似

L=πQ(1+3h/(10+√(4-3h))(1+MN)(Q=a+b、H=((a-b)/(a+b))^2、M=22/7π-1、

M=((a-b)/a)^33.697、)

标准L=Qπ(1+h^2/4+h^4/4^3+h^6/4^4+5^2*h^8/4^7+7^2*h^10/4^8…)(h=

(a-b)/(a+b),Q=a+b,)

几何图形及计算公式查询

平面图形

名称符号周长C和面积S

正方形a—边长

C=4a

S=a2

长方形a和b-边长

C=2(a+b)

S=ab

三角形

a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2

S=ah/2

=ab/2·sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

四边形

d,D-对角线长

α-对角线夹角

S=dD/2·sinα

平行四边形

a,b-边长

h-a边的高

α-两边夹角

S=ah

=absinα

菱形

a-边长

α-夹角

D-长对角线长

d-短对角线长

S=Dd/2

=a2sinα

梯形

a和b-上、下底长

h-高

m-中位线长

S=(a+b)h/2

=mh

r-半径

d-直径

C=πd=2πr

S=πr2

=πd2/4

扇形

r—扇形半径

a—圆心角度数

C=2r+2πr×(a/360)

S=πr2×(a/360)

弓形

l-弧长

b-弦长

h-矢高

r-半径

α-圆心角的度数

S=r2/2·(πα/180-sinα)

=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2

=παr2/360-b/2·[r2-(b/2)2]1/2

=r(l-b)/2+bh/2

≈2bh/3

圆环

R-外圆半径

r-内圆半径

D-外圆直径

d-内圆直径

S=π(R2-r2)

=π(D2-d2)/4

椭圆

D-长轴

d-短轴

S=πDd/4

立方图形

名称符号面积S和体积V

正方体a-边长

S=6a2

V=a3

长方体

a-长

b-宽

c-高

S=2(ab+ac+bc)

V=abc

棱柱

S-底面积

h-高

V=Sh

棱锥

S-底面积

h-高

V=Sh/3

棱台

S1和S2-上、下底

面积

h-高

V=h[S1+S2+(S1S1)1/2]/3

拟柱体

S1-上底面积

S2-下底面积

S0-中截面积

h-高

V=h(S1+S2+4S0)/6

圆柱

r-底半径

h-高

C—底面周长

S底—底面积

S侧—侧面积

S表—表面积

C=2πr

S底=πr2

S侧=Ch

S表=Ch+2S底

V=S底h

=πr2h

空心圆柱

R-外圆半径

r-内圆半径

h-高

V=πh(R2-r2)

直圆锥

r-底半径

h-高

V=πr2h/3

圆台

r-上底半径

R-下底半径

h-高

V=πh(R2+Rr+r2)/3

r-半径

d-直径

V=4/3πr3=πd2/6

球缺

h-球缺高

r-球半径

a-球缺底半径

V=πh(3a2+h2)/6

=πh2(3r-h)/3

a2=h(2r-h)

球台

r1和r2-球台上、

下底半径

h-高

V=πh[3(r1

2+r2

2)+h2]/6

圆环体

R-环体半径

D-环体直径

r-环体截面半径

d-环体截面直径

V=2π2Rr2

=π2Dd2/4

桶状体

D-桶腹直径

d-桶底直径

h-桶高

V=πh(2D2+d2)/12

(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15

(母线是抛物线形)

本文发布于:2022-12-03 10:43:44,感谢您对本站的认可!

本文链接:http://www.wtabcd.cn/fanwen/fan/88/43918.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:15万大写
下一篇:lider
标签:椭圆体积
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图